Advertisement

A Generic Framework for Population-Based Algorithms, Implemented on Multiple FPGAs

  • John Newborough
  • Susan Stepney
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3627)

Abstract

Many bio-inspired algorithms (evolutionary algorithms, artificial immune systems, particle swarm optimisation, ant colony optimisation,...) are based on populations of agents. Stepney et al [2005] argue for the use of conceptual frameworks and meta-frameworks to capture the principles and commonalities underlying these, and other bio-inspired algorithms. Here we outline a generic framework that captures a collection of population-based algorithms, allowing commonalities to be factored out, and properties previously thought particular to one class of algorithms to be applied uniformly across all the algorithms. We then describe a prototype proof-of-concept implementation of this framework on a small grid of FPGA (field programmable gate array) chips, thus demonstrating a generic architecture for both parallelism (on a single chip) and distribution (across the grid of chips) of the algorithms.

Keywords

Field Programmable Gate Array Artificial Immune System Prototype Implementation Main Population Clonal Selection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonabeau, E.W., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from natural to artificial systems. Addison Wesley, Reading (1999)zbMATHGoogle Scholar
  2. 2.
    Brits, R., Engelbrecht, A.P., van den Bergh, F.: A niching Particle Swarm Optimizer. In: 4th Asia-Pacific Conference on Simulated Evolution and Learning (2002)Google Scholar
  3. 3.
    Brown, S., Rose, J.: Architecture of FPGAs and CPLDs: a tutorial. IEEE Design and Test of Computers 13(2), 42–57 (1996)CrossRefGoogle Scholar
  4. 4.
    Celoxica. Handel-C Reference Manual, development kit v3.0 (2004), http://www.celoxica.com/techlib/files/CEL-W0410251JJ4-60.pdf
  5. 5.
    Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: a characterization of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    Garrett, S.M.: Parameter-free, adaptive clonal selection. In: CEC 2004, pp. 1052–1058. IEEE Press, Los Alamitos (2004)Google Scholar
  8. 8.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  10. 10.
    Kim, J., Bentley, P.J.: Immune memory in the dynamic clonal selection algorithm. In: ICARIS 2002, Kent, pp. 59–67 (2002)Google Scholar
  11. 11.
    Mahfoud, S.W.: A comparison of parallel and sequential niching methods. In: Eshelman, L.J. (ed.) Proc. 6th International Conference on Genetic Algorithms, pp. 136–143. Morgan Kaufmann, San Francisco (1995)Google Scholar
  12. 12.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  13. 13.
    Stepney, S.: CSP/FDR2 to Handel-C translation. Technical Report YCS-2003-357, University of York (June 2003)Google Scholar
  14. 14.
    Stepney, S., Smith, R.E., Timmis, J., Tyrrell, A.M., Neal, M.J., Hone, A.N.W.: Conceptual Frameworks for Artificial Immune Systems. Int. J. Unconventional Computing 1(3) (2005)Google Scholar
  15. 15.
    Watkins, A., Timmis, J.: Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 427–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John Newborough
    • 1
  • Susan Stepney
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkHeslington, YorkUK

Personalised recommendations