A Markov Chain Model of the B-Cell Algorithm

  • Edward Clark
  • Andrew Hone
  • Jon Timmis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3627)


An exact Markov chain model of the B-cell algorithm (BCA) is constructed via a novel possible transit method. The model is used to formulate a proof that the BCA is convergent absolute under a very broad set of conditions. Results from a simple numerical example are presented, we use this to demonstrate how the model can be applied to increase understanding of the performance of the BCA in optimizing function landscapes as well as giving insight into the optimal parameter settings for the BCA.


Transition Matrix Clonal Selection Markov Chain Model Artificial Immune System String Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kelsey, J., Timmis, J.: Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation. In: CantuPaz, et al. (eds.) Proc. of Genetic and Evolutionary Computation Conference (GECCO). LNCS, vol. 2723, pp. 207–218. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Kelsey, J., Timmis, J., Hone, A.: Chasing Chaos. In: Sarker, R., Reynolds, R., Abbass, H., Kay-Chen, T., McKay, R. (eds.) Proceedings of the Congress on Evolutionary Computation, Canberra, Australia, December 2003, pp. 413–419. IEEE, Los Alamitos (2003)Google Scholar
  3. 3.
    Rosin-Arbesfeld, R., Townsley, F., Bienz, M.: The APC tumour suppressor has a nuclear export function. Letters to Nature 406, 1009–1012 (2000)CrossRefGoogle Scholar
  4. 4.
    Hone, A., Kelsey, J.: Optima, extrema, and artificial immune systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 80–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation, and Machine Learning. Physica D 22, 187–204 (1986)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Oxford University Press, Oxford (1982)zbMATHGoogle Scholar
  7. 7.
    Villalobos-Arias, M., Coello Coello, C.A., Hernández-Lerma, O.: Convergence analysis of a multiobjective artificial immune system algorithm. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 226–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Seneta, E.: Non-Negative Matrices and Markov Chains. Springer, New York (1981)zbMATHGoogle Scholar
  9. 9.
    Nix, A.E., Vose, M.D.: Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence 5, 79–88 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Vose, M.D.: Modeling Simple Genetic Algorithms. Evolutionary Computation 3(4) (1996)Google Scholar
  11. 11.
    De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Markov Chains to Analyze GAFOs. In: Proceedings of FOGA 1994, Estes Park, CO, pp. 115–137. Morgan Kaufmann, San Francisco (1994)Google Scholar
  12. 12.
    de Castro, L., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems 6, 239–251 (2002)Google Scholar
  13. 13.
    de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: A characterization of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Brzezniak, Z., Zastawniak, T.: Basic Stochastic Processes. Springer, Heidelberg (1999)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Edward Clark
    • 1
  • Andrew Hone
    • 2
  • Jon Timmis
    • 3
  1. 1.Computing LaboratoryUniversity of KentCanterburyUK
  2. 2.Institute of Mathematics, Statistics & Actuarial ScienceUniversity of Kent 
  3. 3.Departments of Electronics and Computer ScienceUniversity of YorkHeslington, York

Personalised recommendations