Mapping Goals and Kinds of Explanations to the Knowledge Containers of Case-Based Reasoning Systems

  • Thomas R. Roth-Berghofer
  • Jörg Cassens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3620)


Research on explanation in Case-Based Reasoning (CBR) is a topic that gains momentum. In this context, fundamental issues on what are and to which end do we use explanations have to be reconsidered. This article presents a prelimenary outline of the combination of two recently proposed classifications of explanations based on the type of the explanation itself and user goals which should be fulfilled. Further on, the contribution of the different knowledge containers for modeling the necessary knowledge is examined.


Expert System Mapping Goal Conceptual Explanation Seat Post Cognitive Explanation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schank, R.C.: Explanation Patterns: Understanding Mechanically and Creatively. Lawrence Erlbaum Associates, Hillsdale (1986)Google Scholar
  2. 2.
    Spieker, P.: Natürlichsprachliche Erklärungen in technischen Expertensystemen. Dissertation, University of Kaiserslautern (1991)Google Scholar
  3. 3.
    Cohnitz, D.: Explanations are like salted peanuts. In: Beckermann, A., Nimtz, C. (eds.) Proceedings of the Fourth International Congress of the Society for Analytic Philosophy (2000), (last access: 2004-08-11)
  4. 4.
    Leake, D.B.: Goal-Based Explanation Evaluation. In: Goal-Driven Learning, pp. 251–285. MIT Press, Cambridge (1995)Google Scholar
  5. 5.
    Swartout, W.: What Kind of Expert Should a System be? XPLAIN: A System for Creating and Explaining Expert Consulting Programs. Artificial Intelligence 21, 285–325 (1983)CrossRefGoogle Scholar
  6. 6.
    Buchanan, B.G., Shortliffe, E.H.: Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison Wesley, Reading (1984)Google Scholar
  7. 7.
    Swartout, W., Smoliar, S.: On Making Expert Systems More Like Experts. Expert Systems 4, 196–207 (1987)CrossRefGoogle Scholar
  8. 8.
    Leake, D.B. (ed.): Case-Based Reasoning: Experiences, Lessons, & Future Directions. AAAI Press/MIT Press, Menlo Park (1996)Google Scholar
  9. 9.
    Schank, R.C., Kass, A., Riesbeck, C.K. (eds.): Inside Case-Based Explanation. Lawrence Erlbaum Associates, Hillsdale (1994)Google Scholar
  10. 10.
    Gregor, S., Benbasat, I.: Explanations From Intelligent Systems: Theoretical Foundations and Implications for Practice. MIS Quarterly 23, 497–530 (1999)CrossRefGoogle Scholar
  11. 11.
    Swartout, W.R., Moore, J.D.: Explanation in second generation expert systems. In: David, J., Krivine, J., Simmons, R. (eds.) Second Generation Expert Systems, pp. 543–585. Springer, Berlin (1993)Google Scholar
  12. 12.
    Gervás, P., Gupta, K.M.: Proceedings of the ECCBR 2004 Workshops. Number 142-04 in Technical Report, Madrid, Departamento de Sistemas Informáticos y Programación, Universidad Complutense Madrid (2004)Google Scholar
  13. 13.
    Funk, P., Calero, P.A.G. (eds.): Advances in Case-Based Reasoning: Proceedings ECCBR 2004. LNCS (LNAI), vol. 3155. Springer, Berlin (2004)Google Scholar
  14. 14.
    Richter, M.M.: Remarks on current explanation research in artificial intelligence, Personal notes (2005)Google Scholar
  15. 15.
    Latour, B.: Technology is Society made Durable. In: Law, J. (ed.) A Sociology of Monsters, pp. 103–131. Routledge, New York (1991)Google Scholar
  16. 16.
    Monteiro, E.: Actor-Network Theory. In: Ciborra, C. (ed.) From Control to Drift, pp. 71–83. Oxford University Press, Oxford (2000)Google Scholar
  17. 17.
    Pieters, W.: Free Will and Intelligent Machines. Project Report, NTNU Trondheim (2001)Google Scholar
  18. 18.
    Lee, J.D., See, K.A.: Trust in Automation: Designing for Appropriate Reliance. Human Factors 46, 50–80 (2004)Google Scholar
  19. 19.
    Ye, L.R., Johnson, P.E.: The impact of explanation facilities on user acceptance of expert systems advice. MIS Q 19, 157–172 (1995)CrossRefGoogle Scholar
  20. 20.
    Richter, M.M.: The knowledge contained in similarity measures. In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, Springer, Heidelberg (1995) (invited talk)Google Scholar
  21. 21.
    Richter, M.M.: Prinzipien der Künstlichen Intelligenz, 2nd edn. B.G. Teubner, Stuttgart (1992)Google Scholar
  22. 22.
    Sørmo, F., Cassens, J.: Explanation goals in case-based reasoning. In: [12], pp. 165–174Google Scholar
  23. 23.
    Sørmo, F., Cassens, J., Aamodt, A.: Explanation in Case-Based Reasoning – Perspectives and Goals (2005) (to be published)Google Scholar
  24. 24.
    Clancey, W.J.: The epistemology of a rule-based expert system: A framework for explanation. Artificial Intelligence 20, 215–251 (1983)CrossRefGoogle Scholar
  25. 25.
    Mao, J.Y., Benbasat, I.: The Use of Explanations in Knowledge-Based System: Cognitive Perspectives and a Process-Tracing Analysis. Journal of Managment Information Systems 17, 153–179 (2000)Google Scholar
  26. 26.
    Roth-Berghofer, T.R.: Explanations and case-based reasoning: Foundational issues. In: Funk, P., Calero, P.A.G. (eds.) Advances in Case-Based Reasoning, pp. 389–403. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Richter, M.M.: The knowledge contained in similarity measures. Invited Talk at the First International Conference on Case-Based Reasoning, ICCBR 1995, Sesimbra, Portugal (1995), (last access: 2002-10-18)
  28. 28.
    Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess, S.: Case-Based Reasoning Technology: From Foundations to Applications. LNCS (LNAI), vol. 1400. Springer, Berlin (1998)CrossRefGoogle Scholar
  29. 29.
    Watson, I.: Survey of CBR application areas. Invited Talk at the 3rd International Conference on Case-Based Reasoning ICCBR (1999)Google Scholar
  30. 30.
    Richter, M.M.: Generalized planning and information retrieval. Technical report, University of Kaiserslautern, Artificial Intelligence – Knowledge-based Systems Group (1997)Google Scholar
  31. 31.
    Cassens, J.: Knowing what to explain and when. In: [12], 97–104Google Scholar
  32. 32.
    Roth-Berghofer, T.R.: Knowledge Maintenance of Case-Based Reasoning Systems – The SIAM Methodology. In: Dissertationen zur Künstlichen Intelligenz, vol. 262. Akademische Verlagsgesellschaft Aka GmbH/IOS Press, Berlin (2003)Google Scholar
  33. 33.
    Aamodt, A.: Explanation-driven case-based reasoning. In: Stefan Wess, K.D.A., Richter, M. (eds.) Topics in Case-Based Reasoning. Springer, Berlin (1994)Google Scholar
  34. 34.
    Aamodt, A.: Knowledge-Intensive Case-Based Reasoning in CREEK. In: [13], pp. 1–15Google Scholar
  35. 35.
    Bergmann, R., Althoff, K.D., Breen, S., Göker, M., Manago, M., Traphöner, R., Wess, S.: Developing Industrial Case-Based Resoning Applications: The INRECA Methodology, 2nd edn. LNCS (LNAI), vol. 1612. Springer, Berlin (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas R. Roth-Berghofer
    • 1
    • 2
  • Jörg Cassens
    • 3
  1. 1.Knowledge-Based Systems Group, Department of Computer ScienceUniversity of KaiserslauternKaiserslautern
  2. 2.Knowledge Management DepartmentGerman Research Center for Artificial Intelligence DFKI GmbHKaiserslauternGermany
  3. 3.Department of Computer and Information Science (IDI)Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations