An Output-Polynomial Time Algorithm for Mining Frequent Closed Attribute Trees

  • Hiroki Arimura
  • Takeaki Uno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3625)

Abstract

Frequent closed pattern discovery is one of the most important topics in the studies of the compact representation for data mining. In this paper, we consider the frequent closed pattern discovery problem for a class of structured data, called attribute trees (AT), which is a subclass of labeled ordered trees and can be also regarded as a fragment of description logic with functional roles only. We present an efficient algorithm for discovering all frequent closed patterns appearing in a given collection of attribute trees. By using a new enumeration method, called the prefix-preserving closure extension, which enable efficient depth-first search over all closed patterns without duplicates, we show that this algorithm works in polynomial time both in the total size of the input database and the number of output trees generated by the algorithm. To our knowledge, this is one of the first result for output-sensitive algorithms for frequent closed substructure disocvery from trees and graphs.

Keywords

frequent closed pattern mining tree mining attribute tree description logic semi-structured data the least general generalization closure operation output-sensitive algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. Morgan Kaufmann, San Francisco (2000)Google Scholar
  2. 2.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  3. 3.
    Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proc. the 2nd SIAM Int’l Conf. on Data Mining (SDM 2002), pp. 158–174 (2002)Google Scholar
  4. 4.
    Asai, T., Arimura, H., Uno, T., Nakano, S.: Discovering frequent substructures in large unordered trees. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 47–61. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65(1–3), 21–46 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bancilhon, K.: A calculus for complex objects. In: PODS 1986, pp. 53–59 (1986)Google Scholar
  7. 7.
    Bayardo Jr., R.J.: Efficiently Mining Long Patterns from Databases. In: Proc. SIGMOD 1998, pp. 85–93 (1998)Google Scholar
  8. 8.
    Bringmann, B.: Matching in Frequent Tree Discovery. In: Proc. IEEE ICDM 2004, pp. 335–338 (2004)Google Scholar
  9. 9.
    Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: A Structural Data Model for Objects. In: Proc. SIGMOD 1989, pp. 58–67. ACM, New York (1989)CrossRefGoogle Scholar
  10. 10.
    Buneman, P., Davidson, S.B., Hillebrand, G.G., Suciu, D.: A query language and optimization techniques for unstructured data. In: Proc. SIGMOD 1996, pp. 505–516. ACM, New York (1996)CrossRefGoogle Scholar
  11. 11.
    Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: Cmtreeminer: Mining both closed and maximal frequent subtrees. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 63–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing Least Common Subsumers in Description Logics. In: Proc. AAAI 1992, pp. 754–760 (1992)Google Scholar
  13. 13.
    Cumby, C.M., Roth, D.: Learning with feature description logic. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 23–47. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Frequent Substructures from Graph Data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Nijssen, S., Kok, J.N.: Effcient Discovery of Frequent Unordered Trees. In: Proc. The First International Workshop on Mining Graphs, Trees and Sequences (MGTS 2003) (September 2003)Google Scholar
  16. 16.
    Kilpelainen, P., Mannila, H.: Ordered and Unordered Tree Inclusion. SIAM J. Computing 24(2), 340–356 (1995)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Kosaraju, S.R.: Efficient tree pattern matching. In: Proc. 30th FOCS, pp. 178–183 (1989)Google Scholar
  18. 18.
    Nakano, S.: Efficient generation of plane trees. Information Processing Letters 84, 167–172 (2002)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Itemsets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Plotkin, G.D.: A note on inductive generalization. Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University PressGoogle Scholar
  21. 21.
    Reynolds, J.C.: Transformational systems and the algebraic structure of atomic formulas. Machine Intelligence, vol. 5, pp. 135–151. Edinburgh University PressGoogle Scholar
  22. 22.
    Termier, A., Rousset, M.-C., Sebag, M.: Treefinder: a first step towards xml data mining. In: Proc. ICMD 2002 (2002)Google Scholar
  23. 23.
    Termier, A., Rousset, M.-C., Sebag, M.: Dryade: a new approach for discovering closed frequent trees in heterogeneous tree databases. In: Proc. ICMD 2004 (2004)Google Scholar
  24. 24.
    Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 16–30. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Wang, K., Liu, H.: Schema Discovery for Semistructured Data. In: Proc. KDD 1997, pp. 271–274 (1997)Google Scholar
  26. 26.
    Yan, X., Han, J.: CloseGraph: Mining Closed Frequent Graph Patterns. In: Proc. SIGKDD 2003. ACM, New York (2003)Google Scholar
  27. 27.
    Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proc. SIGKDD 2002. ACM, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hiroki Arimura
    • 1
  • Takeaki Uno
    • 2
  1. 1.Hokkaido UniversitySapporoJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations