Advertisement

Impossibility and Feasibility Results for Zero Knowledge with Public Keys

  • Joël Alwen
  • Giuseppe Persiano
  • Ivan Visconti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)

Abstract

In this paper, we continue the study of the round complexity of black-box zero knowledge in the bare public-key (BPK, for short) model previously started by Micali and Reyzin in [11]. Specifically we show the impossibility of 3-round concurrent (and thus resettable) black-box zero-knowledge argument systems with sequential soundness for non-trivial languages. In light of the previous state-of-the-art, our result completes the analysis of the round complexity of black-box zero knowledge in the BPK model with respect to the notions of soundness and black-box zero knowledge.

Further we give sufficient conditions for the existence of a 3-round resettable zero-knowledge proof (in contrast to argument) system with concurrent soundness for \(\mathcal{NP}\) in the upperbounded public-key model introduced in [14].

Keywords

False Statement Feasibility Result Argument System Input Tape Overwhelming Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM J. on Computing 18, 186–208 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: Proc. of STOC 1998, pp. 409–418. ACM, New York (1998)Google Scholar
  3. 3.
    Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable Zero-Knowledge. In: Proc. of STOC 2000, pp. 235–244. ACM, New York (2000)Google Scholar
  4. 4.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-Box Concurrent Zero-Knowledge Requires ω(logn) Rounds. In: Proc. of STOC 2001, pp. 570–579. ACM, New York (2001)Google Scholar
  5. 5.
    Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In: Proc. of FOCS 2001, pp. 106–115 (2001)Google Scholar
  6. 6.
    Persiano, G., Visconti, I.: Single-Prover Concurrent Zero Knowledge in Almost Constant Rounds. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 228–240. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Dwork, C., Sahai, A.: Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–457. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. In: Proc. of STOC 2002, pp. 332–340. ACM, New York (2002)Google Scholar
  9. 9.
    Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-Interactive Zero-Knowledge. SIAM J. on Computing 20, 1084–1118 (1991)zbMATHCrossRefGoogle Scholar
  11. 11.
    Micali, S., Reyzin, L.: Soundness in the Public-Key Model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Reyzin, L.: Zero-Knowledge with Public Keys. PhD thesis, Massachusetts Institute of Technology (2001)Google Scholar
  13. 13.
    Di Crescenzo, G., Persiano, G., Visconti, I.: Constant-Round Resettable Zero Knowledge with Concurrent Soundness in the Bare Public-Key Model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 237–253. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Micali, S., Reyzin, L.: Min-Round Resettable Zero-Knowledge in the Public-key Model. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 373–393. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. on Computing 25, 169–192 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kilian, J., Petrank, E., Rackoff, C.: Lower Bounds for Zero Knowledge on the Internet. In: Proc. of FOCS 1998, pp. 484–492 (1998)Google Scholar
  17. 17.
    Rosen, A.: A Note on the Round-Complexity of Concurrent Zero-Knowledge. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451–468. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology 9, 167–190 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Reyzin, L.: Personal communication (2005)Google Scholar
  20. 20.
    Dwork, C., Naor, M.: Zaps and their Applications. In: Proc. of FOCS 2000, pp. 283–293 (2000)Google Scholar
  21. 21.
    Feige, U., Lapidot, D., Shamir, A.: Multiple Non-Interactive Zero Knowledge Proofs Under General Assumptions. SIAM J. on Computing 29, 1–28 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joël Alwen
    • 1
  • Giuseppe Persiano
    • 2
  • Ivan Visconti
    • 2
  1. 1.Technical University of ViennaViennaAustria
  2. 2.Dipartimento di Informatica ed Appl.Università di SalernoBaronissiItaly

Personalised recommendations