New Monotones and Lower Bounds in Unconditional Two-Party Computation

  • Stefan Wolf
  • Jürg Wullschleger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)


Since bit and string oblivious transfer and commitment, two primitives of paramount importance in secure two- and multi-party computation, cannot be realized in an unconditionally secure way for both parties from scratch, reductions to weak information-theoretic primitives as well as between different variants of the functionalities are of great interest. In this context, we introduce three independent monotones—quantities that cannot be increased by any protocol|and use them to derive lower bounds on the possibility and efficiency of such reductions. An example is the transition between different versions of oblivious transfer, for which we also propose a new protocol allowing to increase the number of messages the receiver can choose from at the price of a reduction of their length. Our scheme matches the new lower bound and is, therefore, optimal.


Markov Chain Dependent Part Noisy Channel Oblivious Transfer Cryptology ePrint Archive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)Google Scholar
  2. 2.
    Blundo, C., Masucci, B., Stinson, D.R., Wei, R.: Constructions and bounds for unconditionally secure non-interactive commitment schemes. Designs, Codes, and Cryptography 26(1-3), 97–110 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brassard, G., Crépeau, C., Wolf, S.: Oblivious transfers and privacy amplification. Journal of Cryptology 16(4), 219–237 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cerf, N.J., Massar, S., Schneider, S.: Multipartite classical and quantum secrecy monotones. Phys. Rev. A 66(042309) (2002)Google Scholar
  5. 5.
    Crépeau, C.: Correct and private reductions among oblivious transfers. Ph.D. thesis, MIT (1990)Google Scholar
  6. 6.
    Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 306–317. Springer, Heidelberg (1997)Google Scholar
  7. 7.
    Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Crépeau, C., Sántha, M.: On the reversibility of oblivious transfer. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 106–113. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Dodis, Y., Micali, S.: Lower bounds for oblivious transfer reductions. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 42–55. Springer, Heidelberg (1999)Google Scholar
  10. 10.
    Fitzi, M., Wolf, S., Wullschleger, J.: Pseudo-signatures, broadcast, and multi-party computation from correlated randomness. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 562–578. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Gacs, P., Körner, J.: Common information is far less than mutual information. Probl. Contr. Inform. Theory 2, 149–162 (1973)zbMATHGoogle Scholar
  12. 12.
    Imai, H., Müller-Quade, J., Nascimento, A., Winter, A.: Rates for bit commitment and coin tossing from noisy correlation. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT 2004). IEEE, Los Alamitos (2004)Google Scholar
  13. 13.
    Maurer, U.: Information-theoretic cryptography. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 47–64. Springer, Heidelberg (1999)Google Scholar
  14. 14.
    Maurer, U., Wolf, S.: Unconditionally secure key agreement and the intrinsic conditional information. IEEE Transactions on Information Theory 45(2), 499–514 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nascimento, A.C.A., Müller-Quade, J., Otsuka, A., Imai, H.: Unconditionally secure homomorphic pre-distributed commitments. In: Fossorier, M.P.C., Høholdt, T., Poli, A. (eds.) AAECC 2003. LNCS, vol. 2643, pp. 87–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Renner, R., Wolf, S.: New bounds in secret-key agreement: the gap between formation and secrecy extraction. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 562–577. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes using private channels and a trusted initializer (1999) (unpublished manuscript)Google Scholar
  18. 18.
    Wolf, S., Wullschleger, J.: Zero-error information and applications in cryptography. In: Proceedings of 2004 IEEE Information Theory Workshop, ITW 2004 (2004)Google Scholar
  19. 19.
    Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. Cryptology ePrint Archive, Report 2004/336 (2004),
  20. 20.
    Wolf, S., Wullschleger, J.: Oblivious transfer and quantum non-locality. Quantum Physics e-print Archive, quant-ph/0502030 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefan Wolf
    • 1
  • Jürg Wullschleger
    • 1
  1. 1.Département d’Informatique et R.O.Université de MontréalCanada

Personalised recommendations