Advertisement

Secure Computation of Constant-Depth Circuits with Applications to Database Search Problems

  • Omer Barkol
  • Yuval Ishai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)

Abstract

Motivated by database search problems such as partial match or nearest neighbor, we present secure multiparty computation protocols for constant-depth circuits. Specifically, for a constant-depth circuit C of size s with an m-bit input x, we obtain the following types of protocols.

– In a setting where k ≥ poly log(s) servers hold C and a client holds x, we obtain a protocol in which the client privately learns C(x) by communicating Õ(m) bits with each server.

– In a setting where x is arbitrarily distributed between k ≥ poly log(s) parties who all know C, we obtain a secure protocol for evaluating C(x) using O(m ·poly(k)) communication.

Both types of protocols tolerate t = k/poly log(s) dishonest parties and their computational complexity is nearly linear in s. In particular, the protocols are optimal “up to polylog factors” with respect to communication, local computation, and minimal number of participating parties.

We then apply the above results to obtain sublinear-communication secure protocols for natural database search problems. For instance, for the partial match problem on a database of n points in {0,1} m we get a protocol with \(k \approx \frac{1}{2} log n\) servers, Õ(m) communication, and nearly linear server computation. Applying previous protocols to this problem would either require Ω(nm) communication, Ω̃(m) servers, or super-polynomial computation.

Keywords

Secure Computation Secure Function Evaluation Security Threshold Common Random String Dishonest Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alon, N., Goldreich, O., Hastad, J., Peralta, R.: Simple construction of almost k-wise independent random variables. Random Structures and Algorithms 3(1), 289–304 (1992); Preliminary version in FOCS 1990zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beaver, D., Feigenbaum, J.: Hiding instances in multioracle queries. In: Proc. 7th STACS, pp. 37–48 (1990)Google Scholar
  3. 3.
    Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low communication overhead. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A unified construction. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 912–926. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. 20th STOC (1988)Google Scholar
  6. 6.
    Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. 42st FOCS, pp. 136–145 (2001)Google Scholar
  9. 9.
    Charikar, M., Indyk, P., Panigrahy, R.: New algorithms for subset query, partial match, orthogonal range searching and related problems. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 451–462. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Technical report, Department of Computer Science, Technion (1997)Google Scholar
  11. 11.
    Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proc. 36th FOCS, pp. 41–50 (1995)Google Scholar
  12. 12.
    Cramer, R., Damgård, I., Maurer, U.: General secure multy-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 316. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity of Verifiable Secret Sharing and Secure Multicast. In: Proc. 33rd STOC (2001)Google Scholar
  15. 15.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold. In: Proc. 17th PODC (1998)Google Scholar
  16. 16.
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. J. of Computer and Systems Sciences 60 (2000); Preliminary version in STOC 1998 (1998)Google Scholar
  17. 17.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proc. 19th STOC, pp. 218–229 (1987)Google Scholar
  18. 18.
    Goldreich, O.: Foundations of Cryptography: Basic Applications. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  19. 19.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient secure computation. In: Proc. 41st FOCS, pp. 294–304 (2000)Google Scholar
  20. 20.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor in high dimensional spaces. In: Proc. 30th STOC (1998)Google Scholar
  22. 22.
    Miltersen, P.B.: Cell probe complexity–a survey. In: Pre-Conference Workshop on Advances in Data Structures at the 19th Conference on Foundations of Software Technology and Theoretical Computer Science (1999)Google Scholar
  23. 23.
    Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput. 22(4), 838–856 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: Proc. 33rd STOC, pp. 590–599 (2001)Google Scholar
  25. 25.
    Razborov, A.: Lower bounds for the size of circuits of bounded depth with basis (AND, XOR). Math. Notes of the Academy of Science of the USSR 41(4), 333–338 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Shamir, A.: How to share a secret. Communication of the ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Smolensky, R.: Algebric methods in the theory of lower bound for boolean circuit complexity. In: Proc. 19th STOC, pp. 77–82 (1987)Google Scholar
  28. 28.
    Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theoretical Computer Science 47, 85–93 (1986); Preliminary version in STOC 1985 (1985)Google Scholar
  29. 29.
    Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic private information retrieval. In: Electronic Colloquium on Computational Complexity, ECCC (2005); Report TR05-009. To appear in CCC 2005 (2005)Google Scholar
  30. 30.
    Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Omer Barkol
    • 1
  • Yuval Ishai
    • 1
  1. 1.Computer Science DepartmentTechnion 

Personalised recommendations