Advertisement

Black-Box Secret Sharing from Primitive Sets in Algebraic Number Fields

  • Ronald Cramer
  • Serge Fehr
  • Martijn Stam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)

Abstract

A black-box secret sharing scheme (BBSSS) for a given access structure works in exactly the same way over any finite Abelian group, as it only requires black-box access to group operations and to random group elements. In particular, there is no dependence on e.g. the structure of the group or its order. The expansion factor of a BBSSS is the length of a vector of shares (the number of group elements in it) divided by the number of players n.

At CRYPTO 2002 Cramer and Fehr proposed a threshold BBSSS with an asymptotically minimal expansion factor Θ(log n).

In this paper we propose a BBSSS that is based on a new paradigm, namely, primitive sets in algebraic number fields. This leads to a new BBSSS with an expansion factor that is absolutely minimal up to an additive term of at most 2, which is an improvement by a constant additive factor.

We provide good evidence that our scheme is considerably more efficient in terms of the computational resources it requires. Indeed, the number of group operations to be performed is Õ(n 2) instead of Õ(n 3) for sharing and Õ(n 1.6) instead of Õ(n 2.6) for reconstruction.

Finally, we show that our scheme, as well as that of Cramer and Fehr, has asymptotically optimal randomness efficiency.

Keywords

Secret Sharing Algebraic Number Expansion Factor Secret Sharing Scheme Chinese Remainder Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. National Computer Conference 1979. AFIPS Proceedings, vol. 48, pp. 313–317 (1979)Google Scholar
  2. 2.
    Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary Abelian groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 272–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 596–613. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Desmedt, Y., Frankel, Y.: Threshold cryptosystem. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Desmedt, Y., King, B., Kishimoto, W., Kurosawa, K.: A comment on the efficiency of secret sharing scheme over any finite abelian group. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 391–402. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. 6.
    Fehr, S.: Secure Multi-Player Protocols: Fundamentals, Generality, and Efficiency. PhD thesis, University of Århus (2003)Google Scholar
  7. 7.
    Frankel, Y., Gemmell, P., MacKenzie, P., Yung, M.: Optimal resilience proactive public-key cryptosystems. In: Proceedings of FOCS 1997, pp. 384–393. IEEE Press, Los Alamitos (1997)Google Scholar
  8. 8.
    Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eigth Annual Structure in Complexity Theory Conference, pp. 102–111. IEEE Computer Society Press, Los Alamitos (1993)CrossRefGoogle Scholar
  9. 9.
    King, B.: A Comment on Group Independent Threshold Sharing. In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 425–441. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    King, B.S.: Some Results in Linear Secret Sharing. PhD thesis, University of Wisconsin-Milwaukee (2000)Google Scholar
  11. 11.
    Lang, S.: Algebra, 3rd edn. Addison-Wesley Publishing Company, Reading (1997)Google Scholar
  12. 12.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Stam, M.: Speeding up Subgroup Cryptosystems. PhD thesis, Technische Universiteit Eindhoven (2003)Google Scholar
  15. 15.
    Stinson, D., Wei, R.: Bibliography on Secret Sharing Schemes (2003), http://www.cacr.math.uwaterloo.ca/dstinson/ssbib.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ronald Cramer
    • 1
    • 2
  • Serge Fehr
    • 1
  • Martijn Stam
    • 3
  1. 1.CWIAmsterdamThe Netherlands
  2. 2.Mathematical InstituteLeiden UniversityThe Netherlands
  3. 3.Department of Computer ScienceUniversity of BristolUnited Kingdom

Personalised recommendations