On Codes, Matroids and Secure Multi-party Computation from Linear Secret Sharing Schemes

  • Ronald Cramer
  • Vanesa Daza
  • Ignacio Gracia
  • Jorge Jiménez Urroz
  • Gregor Leander
  • Jaume Martí-Farré
  • Carles Padró
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)


Error correcting codes and matroids have been widely used in the study of ordinary secret sharing schemes. In this paper, we study the connections between codes, matroids and a special class of secret sharing schemes, namely multiplicative linear secret sharing schemes. Such schemes are known to enable multi-party computation protocols secure against general (non-threshold) adversaries.

Two open problems related to the complexity of multiplicative LSSSs are considered in this paper.

The first one deals with strongly multiplicative LSSSs. As opposed to the case of multiplicative LSSSs, it is not known whether there is an efficient method to transform an LSSS into a strongly multiplicative LSSS for the same access structure with a polynomial increase of the complexity. We prove a property of strongly multiplicative LSSSs that could be useful in solving this problem. Namely, using a suitable generalization of the well-known Berlekamp-Welch decoder, we show that all strongly multiplicative LSSSs enable efficient reconstruction of a shared secret in the presence of malicious faults.

The second one is to characterize the access structures of ideal multiplicative LSSSs. Specifically, we wonder whether all self-dual vector space access structures are in this situation. By the aforementioned connection, this in fact constitutes an open problem about matroid theory, since it can be re-stated in terms of representability of identically self-dual matroids by self-dual codes. We introduce a new concept, the flat-partition, that provides a useful classification of identically self-dual matroids. Uniform identically self-dual matroids, which are known to be representable by self-dual codes, form one of the classes. We prove that this property also holds for the family of matroids that, in a natural way, is the next class in the above classification: the identically self-dual bipartite matroids.


multi-party computation multiplicative linear secret sharing schemes identically self-dual matroids self-dual codes efficient error correction 


  1. 1.
    Barg, A.: On some polynomials related to weight enumerators of linear codes. SIAM J. Discrete Math. 15, 155–164 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beimel, A., Tassa, T., Weinreb, E.: Characterizing Ideal Weighted Threshold Secret Sharing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 600–619. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proc. ACM STOC 1988, pp. 1–10 (1988)Google Scholar
  4. 4.
    Brickell, E.F.: Some ideal secret sharing schemes. J. Combin. Math. and Combin. Comput. 9, 105–113 (1989)MathSciNetGoogle Scholar
  5. 5.
    Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. Cryptology. 4, 123–134 (1991)zbMATHGoogle Scholar
  6. 6.
    Britz, T.: MacWilliams identities and matroid polynomials. Electron. J. Combin. 9, 16 (2002), Research Paper 19MathSciNetGoogle Scholar
  7. 7.
    Cameron, P.J.: Cycle index, weight enumerator, and Tutte polynomial. Electron. J. Combin. 9, 10, Note 2 (2002)Google Scholar
  8. 8.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Proc. ACM STOC 1996. In: Proc. ACM STOC 1996, pp. 639–648 (1996)Google Scholar
  9. 9.
    Chaum, D., Crépeau, C., Damgård, I.: Multi-party unconditionally secure protocols. In: Proc. ACM STOC 1988, pp. 11–19 (1988)Google Scholar
  10. 10.
    Cramer, R., Damgård, I., Maurer, U.: General Secure Multi-Party Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Goldreich, O., Micali, M., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proc. 19th ACM Symposium on the Theory of Computing STOC 1987, pp. 218–229 (1987)Google Scholar
  12. 12.
    Greene, C.: Weight enumeration and the geometry of linear codes. Studies in Appl. Math. 55, 119–128 (1976)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hirt, M., Maurer, U.: Complete characterization of adversaries tolerable in secure multi-party computation. In: Proc. 16th Symposium on Principles of Distributed Computing PODC 1997, pp. 25–34 (1997)Google Scholar
  14. 14.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing any access structure. In: Proc. IEEE Globecom, pp. 99–102 (1987)Google Scholar
  15. 15.
    Jackson, W.-A., Martin, K.M.: Geometric secret sharing schemes and their duals. Des. Codes Cryptogr. 4, 83–95 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eighth Annual Structure in Complexity Theory Conference, San Diego, CA, pp. 102–111 (1993)Google Scholar
  17. 17.
    Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Boston (1985)zbMATHGoogle Scholar
  18. 18.
    Martí-Farré, J., Padró, C.: Secret sharing schemes on access structures with intersection number equal to one. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 354–363. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Matúš, F.: Matroid representations by partitions. Discrete Mathematics 203, 169–194 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ng, S.-L.: A Representation of a Family of Secret Sharing Matroids. Des. Codes Cryptogr. 30, 5–19 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ng, S.-L., Walker, M.: On the composition of matroids and ideal secret sharing schemes. Des. Codes Cryptogr. 24, 49–67 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Oxley, J.G.: Matroid theory. Oxford Science Publications/The Clarendon Press/Oxford University Press, New York (1992)zbMATHGoogle Scholar
  23. 23.
    Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 500–511. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  24. 24.
    Pellikaan, R.: On decoding by error location and dependent sets of error positions. Discrete Math. 106/107, 369–381 (1992)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Reichstein, Z., Youssin, B.: Essential dimensions of algebraic groups and a resolution theorem for G-varieties. With an appendix by János Kollár and Endre Szabó. Canad. J. Math. 52, 1018–1056 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Shamir, A.: How to share a secret. Commun. of the ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Simmons, G.J.: An introduction to shared secret and/or shared control schemes and their application. In: Contemporary Cryptology. The Science of Information Integrity, pp. 441–497. IEEE Press, Los Alamitos (1991)Google Scholar
  28. 28.
    Simonis, J., Ashikhmin, A.: Almost affine codes. Des. Codes Cryptogr. 14, 179–197 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Stinson, D.R.: An explication of secret sharing schemes. Des. Codes Cryptogr. 2, 357–390 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Tassa, T.: Hierarchical Threshold Secret Sharing. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 473–490. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ronald Cramer
    • 1
  • Vanesa Daza
    • 2
  • Ignacio Gracia
    • 2
  • Jorge Jiménez Urroz
    • 2
  • Gregor Leander
    • 3
  • Jaume Martí-Farré
    • 2
  • Carles Padró
    • 2
  1. 1.CWI, Amsterdam & Mathematical InstituteLeiden University 
  2. 2.Dept. of Applied Maths. IVTechnical University of CataloniaBarcelona
  3. 3.CITS Research GroupRuhr-University Bochum 

Personalised recommendations