Advertisement

Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions

  • Michel Abdalla
  • Mihir Bellare
  • Dario Catalano
  • Eike Kiltz
  • Tadayoshi Kohno
  • Tanja Lange
  • John Malone-Lee
  • Gregory Neven
  • Pascal Paillier
  • Haixia Shi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3621)

Abstract

We identify and fill some gaps with regard to consistency (the extent to which false positives are produced) for public-key encryption with keyword search (PEKS). We define computational and statistical relaxations of the existing notion of perfect consistency, show that the scheme of [7] is computationally consistent, and provide a new scheme that is statistically consistent. We also provide a transform of an anonymous IBE scheme to a secure PEKS scheme that, unlike the previous one, guarantees consistency. Finally we suggest three extensions of the basic notions considered here, namely anonymous HIBE, public-key encryption with temporary keyword search, and identity-based encryption with keyword search.

Keywords

Random Oracle Random Oracle Model Cryptology ePrint Archive Searchable Encryption Perfect Consistency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency properties, relation to anonymous ibe, and extensions. Full version of current paper. Available at IACR Cryptology ePrint Archive, http://eprint.iacr.org
  2. 2.
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: 29th ACM STOC. ACM Press, New York (1997)Google Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 566. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 431. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS 1993. ACM Press, New York (1993)Google Scholar
  6. 6.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.K.: Identity based encryption from the Weil pairing. SIAM Journal on Computing 32(3) (2003)Google Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003)Google Scholar
  13. 13.
    Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  14. 14.
    Golle, P., Staddon, J., Waters, B.R.: Secure conjunctive keyword search over encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Halevi, S.: A sufficient condition for key-privacy. Cryptology ePrint Archive, Report 2005/005 (2005)Google Scholar
  16. 16.
    Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, p. 466. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  18. 18.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and Privacy (2000)Google Scholar
  19. 19.
    Waters, B.R.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and searchable audit log. In: ISOC NDSS 2004 (2004) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michel Abdalla
    • 1
  • Mihir Bellare
    • 2
  • Dario Catalano
    • 1
  • Eike Kiltz
    • 2
  • Tadayoshi Kohno
    • 2
  • Tanja Lange
    • 3
  • John Malone-Lee
    • 4
  • Gregory Neven
    • 5
  • Pascal Paillier
    • 6
  • Haixia Shi
    • 2
  1. 1.Departement d’InformatiqueÉcole normale supérieure 
  2. 2.Department of Computer Science & EngineeringUniversity of California San Diego 
  3. 3.Department of MathematicsTechnical University of Denmark 
  4. 4.Department of Computer ScienceUniversity of Bristol 
  5. 5.Department of Electrical EngineeringKatholieke Universiteit Leuven 
  6. 6.Applied Research and Security CenterGemplus Card International 

Personalised recommendations