The Complexity of Implicit and Space Efficient Priority Queues

  • Christian W. Mortensen
  • Seth Pettie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3608)

Abstract

In this paper we study the time-space complexity of implicit priority queues supporting the decreasekey operation. Our first result is that by using one extra word of storage it is possible to match the performance of Fibonacci heaps: constant amortized time for insert and decreasekey and logarithmic time for deletemin. Our second result is a lower bound showing that that one extra word really is necessary. We reduce the decreasekey operation to a cell-probe type game called the Usher’s Problem, where one must maintain a simple data structure without the aid of any auxiliary storage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, A., Hagerup, T., Hastad, J., Petersson, O.: Tight bounds for searching a sorted array of strings. SIAM J. Comput. 30(5), 1552–1578 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brodnik, A., Carlsson, S., Demaine, E., Munro, J.I., Sedgewick, R.: Resizable arrays in optimal time and space. In: WADS, p. 37 (1999)Google Scholar
  4. 4.
    Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum space. SIAM J. Comput. 28(5), 1627–1640 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Carlsson, S., Munro, J.I., Poblete, P.V.: An implicit binomial queue with constant insertion time. In: SWAT, pp. 1–13 (1988)Google Scholar
  6. 6.
    Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: an alternative to Fibonacci heaps with applications to parallel computation. Comm. ACM 31(11), 1343–1354 (1988)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fiat, A., Naor, M.: Implicit O(1) probe search. SIAM J. Comput. 22(1), 1–10 (1993)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fiat, A., Naor, M., Schmidt, J.P., Siegel, A.: Nonoblivious hashing. J. ACM 39(4), 764–782 (1992)MATHMathSciNetGoogle Scholar
  9. 9.
    Franceschini, G., Grossi, R.: Optimal worst-case operations for implicit cache-oblivious search trees. In: Proc. 8th WADS (2003)Google Scholar
  10. 10.
    Franceschini, G., Grossi, R.: No sorting? better searching! In: Proc. 45th IEEE Symp. on Foundations of Computer Science (FOCS), pp. 491–498 (2004)Google Scholar
  11. 11.
    Fredman, M.L.: On the efficiency of pairing heaps and related data structures. J. ACM 46(4), 473–501 (1999)MATHMathSciNetGoogle Scholar
  12. 12.
    Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: a new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)MathSciNetGoogle Scholar
  14. 14.
    Hagerup, T., Raman, R.: An efficient quasidictionary. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, p. 1. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Harvey, N.J.A., Zatloukal, K.: The post-order heap. In: Proc. FUN (2004)Google Scholar
  16. 16.
    Iacono, J.: Improved upper bounds for pairing heaps. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 32–43. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Johnson, D.B.: Priority queues with update and finding minimum spanning trees. Info. Proc. Lett. 4(3), 53–57 (1975)MATHCrossRefGoogle Scholar
  18. 18.
    Kaplan, H., Tarjan, R.E.: New heap data structures. Technical Report TR-597-99, Computer Science Dept., Princeton University (March 1999)Google Scholar
  19. 19.
    Mortensen, C.W., Pettie, S.: The complexity of implicit and space-efficient priority queues. Manuscript (2005), http://www.mpi-sb.mpg.de/~pettie/
  20. 20.
    Munro, J.I.: An implicit data structure supporting insertion, deletion, and search in \(O({\rm log}\sp 2\, n)\) time. J. Comput. Syst. Sci. 33(1), 66–74 (1986)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. J. Comput. Syst. Sci. 21(2), 236–250 (1980)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM J. Comput. 31(2), 353–363 (2001)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications to encoding k-ary trees and multisets. In: SODA, pp. 233–242 (2002)Google Scholar
  24. 24.
    Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Proc. 30th Int’l Colloq. on Automata, Languages and Programming (2003)Google Scholar
  25. 25.
    Takaoka, T.: Theory of 2–3 heaps. Discrete Appl. Math. 126(1), 115–128 (2003)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Williams, J.W.J.: Algorithm 232 (heapsort). Comm. ACM 7, 347–348 (1964)Google Scholar
  27. 27.
    Yao, A.C.C.: Should tables be sorted? J. ACM 28(3), 615–628 (1981)MATHGoogle Scholar
  28. 28.
    Zuckerman, D.: Computing Efficiently Using General Weak Random Sources. Ph.D. Thesis, The University of California at Berkeley (August 1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christian W. Mortensen
    • 1
  • Seth Pettie
    • 2
  1. 1.IT University of Copenhagen 
  2. 2.Max Planck Institut für Informatik 

Personalised recommendations