Advertisement

All-Pairs Shortest Paths with Real Weights in O(n3/log n) Time

  • Timothy M. Chan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3608)

Abstract

We describe an O(n 3/log n)-time algorithm for the all-pairs-shortest-paths problem for a real-weighted directed graph with n vertices. This slightly improves a series of previous, slightly subcubic algorithms by Fredman (1976), Takaoka (1992), Dobosiewicz (1990), Han (2004), Takaoka (2004), and Zwick (2004). The new algorithm is surprisingly simple and different from previous ones.

Keywords

Short Path Table Lookup Integer Weight Real Weight Distance Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)zbMATHGoogle Scholar
  2. 2.
    Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. J. Comput. Sys. Sci. 54, 255–262 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arlazarov, V.L., Dinic, E.C., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. Soviet Math. Dokl. 11, 1209–1210 (1970)zbMATHGoogle Scholar
  4. 4.
    Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: Linear-time pointer-machine algorithms for least common ancestors, MST verification, and dominators. In: Proc. 30th ACM Sympos. Theory Comput., pp. 279–288 (1998)Google Scholar
  5. 5.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9, 251–280 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)zbMATHGoogle Scholar
  7. 7.
    Dobosiewicz, W.: A more efficient algorithm for the min-plus multiplication. Int. J. Computer Math. 32, 49–60 (1990)zbMATHCrossRefGoogle Scholar
  8. 8.
    Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 788–797 (2004)Google Scholar
  9. 9.
    Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. J. Comput. Sys. Sci. 51, 261–272 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 49–60 (1976)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. J. Comput. Sys. Sci. 54, 243–254 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Han, Y.: Improved algorithm for all pairs shortest paths. Inform. Process. Lett. 91, 245–250 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoret. Comput. Sci. 312, 47–74 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. (to appear)Google Scholar
  15. 15.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)Google Scholar
  16. 16.
    Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Sys. Sci. 51, 400–403 (1995)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: Proc. 40th IEEE Sympos. Found. Comput. Sci., pp. 605–614 (1999)Google Scholar
  18. 18.
    Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Inform. Process. Lett. 43, 195–199 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 278–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Yuster, R., Zwick, U.: Fast sparse matrix multiplication. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 604–615. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 289–317 (2002)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 921–932. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Timothy M. Chan
    • 1
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations