Hinged Dissection of Polypolyhedra

  • Erik D. Demaine
  • Martin L. Demaine
  • Jeffrey F. Lindy
  • Diane L. Souvaine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3608)


This paper presents a general family of 3D hinged dissections for polypolyhedra, i.e., connected 3D solids formed by joining several rigid copies of the same polyhedron along identical faces. (Such joinings are possible only for reflectionally symmetric faces.) Each hinged dissection consists of a linear number of solid polyhedral pieces hinged along their edges to form a flexible closed chain (cycle). For each base polyhedron P and each positive integer n, a single hinged dissection has folded configurations corresponding to all possible polypolyhedra formed by joining n copies of the polyhedron P. In particular, these results settle the open problem posed in [7] about the special case of polycubes (where P is a cube) and extend analogous results from 2D [7].Along the way, we present hinged dissections for polyplatonics (where P is a platonic solid) that are particularly efficient: among a type of hinged dissection, they use the fewest possible pieces.


Span Tree Hamiltonian Cycle Hamiltonian Path Closed Chain Inductive Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures in the plane. In: Cai, J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 117–126. Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton for polygons. Journal of Universal Computer Science 1(12), 752–761 (1995)MathSciNetGoogle Scholar
  3. 3.
    Akiyama, J., Nakamura, G.: Dudeney dissection of polygons. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 14–29. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Arkin, E.M., Held, M., Mitchell, J.S.B., Skiena, S.S.: Hamiltonian triangulations for fast rendering. The Visual Computer 12(9), 429–444 (1996)Google Scholar
  5. 5.
    Boltianskii, V.G.: Hilbert’s Third Problem. V. H. Winston & Sons (1978)Google Scholar
  6. 6.
    Cheng, S.-W., Vigneron, A.: Motorcycle graphs and straight skeletons. In: Proc. 13th Ann. ACM-SIAM Sympos. Discrete Algorithms, pp. 156–165 (2002)Google Scholar
  7. 7.
    Demaine, E.D., Demaine, M.L., Eppstein, D., Frederickson, G.N., Friedman, E.: Hinged dissection of polyominoes and polyforms. Computational Geometry: Theory and Applications (to appear)
  8. 8.
    Dudeney, H.E.: Puzzles and prizes. Weekly Dispatch, April 6 (1902)Google Scholar
  9. 9.
    Eppstein, D.: Hinged kite mirror dissection (June 2001),
  10. 10.
    Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. Discrete & Computational Geometry 22(4), 569–592 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Erickson, J.: Personal communication (February 2000)Google Scholar
  12. 12.
    Frederickson, G.N.: Dissections: Plane and Fancy. Cambridge Univ. Press, Cambridge (1997)zbMATHGoogle Scholar
  13. 13.
    Frederickson, G.N.: Hinged Dissections: Swinging & Twisting. Cambridge Univ. Press, Cambridge (2002)zbMATHGoogle Scholar
  14. 14.
    Griffith, S.: Growing Machines. PhD thesis, MIT Media Laboratory, September 2004Google Scholar
  15. 15.
    Kranakis, E., Krizanc, D., Urrutia, J.: Efficient regular polygon dissections. Geometriae Dedicata 80, 247–262 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lowry, M.: Solution to question 269, [proposed] by Mr. W. Wallace. In: T. Leybourn, ed., Mathematical Repository, vol. 3, part 1, pp. 44–46. W. Glendinning (1814)Google Scholar
  17. 17.
    Mao, C., Thallidi, V.R., Wolfe, D.B., Whitesides, S., Whitesides, G.M.: Dissections: Self-assembled aggregates that spontaneously reconfigure their structures when their environment changes. J. Amer. Chemical Soc. 124, 14508–14509 (2002)CrossRefGoogle Scholar
  18. 18.
    Palmer, L.: The helium stockpile: Under shifting conditions of heat and pressure. In: Installation, Radcliffe College, Cambridge, Massachusetts (April 2004)Google Scholar
  19. 19.
    Rus, D., Butler, Z., Kotay, K., Vona, M.: Self-reconfiguring robots. Communications of the ACM 45(3), 39–45 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Martin L. Demaine
    • 1
  • Jeffrey F. Lindy
    • 2
  • Diane L. Souvaine
    • 3
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA
  3. 3.Department of Computer ScienceTufts UniversityMedfordUSA

Personalised recommendations