Improved Fixed-Parameter Algorithms for Two Feedback Set Problems

  • Jiong Guo
  • Jens Gramm
  • Falk Hüffner
  • Rolf Niedermeier
  • Sebastian Wernicke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3608)

Abstract

Settling a ten years open question, we show that the NP-complete Feedback Vertex Set problem is deterministically solvable in O(ck · m) time, where m denotes the number of graph edges, k denotes the size of the feedback vertex set searched for, and c is a constant. As a second result, we present a fixed-parameter algorithm for the NP-complete Edge Bipartization problem with runtime O(2k · m2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics 3(2), 289–297 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM Journal on Computing 27(4), 942–959 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the Loop Cutset problem. Journal of Artificial Intelligence Research 12, 219–234 (2000)MATHMathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L.: On disjoint cycles. International Journal of Foundations of Computer Science 5, 59–68 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An \(\mathcal O^*(2^{O(k)})\) FPT algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. Congressus Numerantium 87, 161–187 (1992)MathSciNetGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fellows, M.R.: New directions and new challenges in algorithm design and complexity, parameterized. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 505–520. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. A, pp. 209–258. Kluwer, Dordrecht (1999)Google Scholar
  10. 10.
    Fiorini, S., Hardy, N., Reed, B., Vetta, A.: Planar graph bipartization in linear time. In: Proc. 2nd GRACO. Electronic Notes in Discrete Mathematics (2005)Google Scholar
  11. 11.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hüffner, F.: Algorithm engineering for optimal graph bipartization. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 240–252. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Kahng, A.B., Vaya, S., Zelikovsky, A.: New graph bipartizations for double-exposure, bright field alternating phase-shift mask layout. In: Proc. Asia and South Pacific Design Automation Conference, pp. 133–138 (2001)Google Scholar
  14. 14.
    Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 40–51. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Niedermeier, R.: Ubiquitous parameterization—invitation to fixed-parameter algorithms. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 84–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2005) (forthcoming)Google Scholar
  18. 18.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pop, M., Kosack, D.S., Salzberg, S.L.: Hierarchical scaffolding with Bambus. Genome Research 14, 149–159 (2004)CrossRefGoogle Scholar
  20. 20.
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster algorithms for feedback vertex set. In: Proc. 2nd GRACO. Electronic Notes in Discrete Mathematics (2005)Google Scholar
  22. 22.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32, 299–301 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wernicke, S.: On the algorithmic tractability of single nucleotide polymorphism (SNP) analysis and related problems. Diplomarbeit, WSI für Informatik, Universität Tübingen (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jiong Guo
    • 1
  • Jens Gramm
    • 2
  • Falk Hüffner
    • 1
  • Rolf Niedermeier
    • 1
  • Sebastian Wernicke
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations