Improved Fixed-Parameter Algorithms for Two Feedback Set Problems

  • Jiong Guo
  • Jens Gramm
  • Falk Hüffner
  • Rolf Niedermeier
  • Sebastian Wernicke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3608)

Abstract

Settling a ten years open question, we show that the NP-complete Feedback Vertex Set problem is deterministically solvable in O(c k · m) time, where m denotes the number of graph edges, k denotes the size of the feedback vertex set searched for, and c is a constant. As a second result, we present a fixed-parameter algorithm for the NP-complete Edge Bipartization problem with runtime O(2 k · m 2).

Keywords

Bipartite Graph Combinatorial Explosion Compression Step Candidate Vertex Data Reduction Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal on Discrete Mathematics 3(2), 289–297 (1999)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference. SIAM Journal on Computing 27(4), 942–959 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the Loop Cutset problem. Journal of Artificial Intelligence Research 12, 219–234 (2000)MATHMathSciNetGoogle Scholar
  4. 4.
    Bodlaender, H.L.: On disjoint cycles. International Journal of Foundations of Computer Science 5, 59–68 (1994)MATHCrossRefGoogle Scholar
  5. 5.
    Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An \(\mathcal O^*(2^{O(k)})\) FPT algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness. Congressus Numerantium 87, 161–187 (1992)MathSciNetGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fellows, M.R.: New directions and new challenges in algorithm design and complexity, parameterized. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 505–520. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, vol. A, pp. 209–258. Kluwer, Dordrecht (1999)Google Scholar
  10. 10.
    Fiorini, S., Hardy, N., Reed, B., Vetta, A.: Planar graph bipartization in linear time. In: Proc. 2nd GRACO. Electronic Notes in Discrete Mathematics (2005)Google Scholar
  11. 11.
    Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hüffner, F.: Algorithm engineering for optimal graph bipartization. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 240–252. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Kahng, A.B., Vaya, S., Zelikovsky, A.: New graph bipartizations for double-exposure, bright field alternating phase-shift mask layout. In: Proc. Asia and South Pacific Design Automation Conference, pp. 133–138 (2001)Google Scholar
  14. 14.
    Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Lund, C., Yannakakis, M.: The approximation of maximum subgraph problems. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 40–51. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Niedermeier, R.: Ubiquitous parameterization—invitation to fixed-parameter algorithms. In: Fiala, J., Koubek, V., Kratochvíl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 84–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2005) (forthcoming)Google Scholar
  18. 18.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pop, M., Kosack, D.S., Salzberg, S.L.: Hierarchical scaffolding with Bambus. Genome Research 14, 149–159 (2004)CrossRefGoogle Scholar
  20. 20.
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 241–248. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster algorithms for feedback vertex set. In: Proc. 2nd GRACO. Electronic Notes in Discrete Mathematics (2005)Google Scholar
  22. 22.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32, 299–301 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wernicke, S.: On the algorithmic tractability of single nucleotide polymorphism (SNP) analysis and related problems. Diplomarbeit, WSI für Informatik, Universität Tübingen (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jiong Guo
    • 1
  • Jens Gramm
    • 2
  • Falk Hüffner
    • 1
  • Rolf Niedermeier
    • 1
  • Sebastian Wernicke
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenTübingenGermany

Personalised recommendations