Radio Networks with Reliable Communication

  • Yvo Desmedt
  • Yongge Wang
  • Rei Safavi-Naini
  • Huaxiong Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3595)


Problems of secure communication and computation have been studied extensively in network models, for example, Franklin and Yung have studied secure communications in the general networks modeled by hypergraphs. Radio networks have received special attention in recent years. For example, the Bluetooth and IEEE 802.11 networks are all based on radio network technologies. In this paper, we use directed colored-edge multigraphs to model the radio networks and study reliable and private message transmissions in radio networks.


radio network privacy reliability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: On the complexity of radio communication. In: Proceedings of ACM STOC 1989, pp. 274–285 (1989)Google Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computing. In: Proc. ACM STOC, 1988, pp. 1–10. ACM Press, New York (1988)Google Scholar
  3. 3.
    Berge, C.: Hypergraphs: Combinatorics of finite sets. Translated from the French. North- Holland Mathematical Library 45 (1989)Google Scholar
  4. 4.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Inc., Englewood Cliffs (1992)Google Scholar
  5. 5.
    Chaum, D., Crepeau, C., Damgard, I.: Multiparty unconditional secure protocols. In: Proc. ACM STOC 1988, pp. 11–19. ACM Press, New York (1988)Google Scholar
  6. 6.
    Desmedt, Y., Safavi-Naini, R., Wang, H., Batten, L.M., Charnes, C., Pieprzyk, J.: Broadcast anti-jamming systems. Computer Networks 35(2-3), 223–236 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Dolev, D.: The Byzantine generals strike again. J. of Algorithms 3, 14–30 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. of the ACM 40(1), 17–47 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Erdös, P., Frankl, P., Furedi, Z.: Families of finite sets in which no set is covered by the union of r others. Israel Journal of Mathematics 51, 79–89 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor networks. In: Proc. 9th ACM Conference on Computer and Communication Security, pp. 41–47 (2002)Google Scholar
  12. 12.
    Franklin, M., Wright, R.: Secure communication in minimal connectivity models. Journal of Cryptology 13(1), 9–30 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Franklin, M., Yung, M.: Secure hypergraphs: privacy from partial broadcast. In: Proc. ACM STOC 1995, pp. 36–44. ACM Press, New York (1995)Google Scholar
  14. 14.
    Goldreich, O., Goldwasser, S., Linial, N.: Fault-tolerant computation in the full information model. SIAM J. Comput. 27(2), 506–544 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hadzilacos, V.: Issues of Fault Tolerance in Concurrent Computations. PhD thesis, Harvard University, Cambridge, MA (1984)Google Scholar
  16. 16.
    Mitchell, C.J., Piper, F.C.: Key Storage in Secure Networks. Discrete Applied Mathematics 21, 215–228 (1988)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority. In: Proc. ACM STOC 1989, pp. 73–85. ACM Press, New York (1989)Google Scholar
  18. 18.
    Stinson, D.R., van Trung, T., Wei, R.: Secure frameproof codes, key distribution patterns, group testing algorithms and related structures. J. Statist. Plan. Infer. 86, 595–617 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, Y., Desmedt, Y.: Secure communication in multicast channels: the answer to Franklin and Wright’s question. J. of Cryptology 14(2), 121–135 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yvo Desmedt
    • 1
  • Yongge Wang
    • 2
  • Rei Safavi-Naini
    • 3
  • Huaxiong Wang
    • 4
  1. 1.University College LondonUK
  2. 2.University of North Carolina at CharlotteUSA
  3. 3.University of WollongongAustralia
  4. 4.Macquarie UniversityAustralia

Personalised recommendations