Trimaran: An Infrastructure for Research in Instruction-Level Parallelism

  • Lakshmi N. Chakrapani
  • John Gyllenhaal
  • Wen-mei W. Hwu
  • Scott A. Mahlke
  • Krishna V. Palem
  • Rodric M. Rabbah
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3602)

Abstract

Trimaran is an integrated compilation and performance monitoring infrastructure. The architecture space that Trimaran covers is characterized by HPL-PD, a parameterized processor architecture supporting novel features such as predication, control and data speculation and compiler controlled management of the memory hierarchy. Trimaran also consists of a full suite of analysis and optimization modules, as well as a graph-based intermediate language. Optimizations and analysis modules can be easily added, deleted or bypassed, thus facilitating compiler optimization research. Similarly, computer architecture research can be conducted by varying the HPL-PD machine via the machine description language HMDES. Trimaran also provides a detailed simulation environment and a flexible performance monitoring environment that automatically tracks the machine as it is varied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, S., Kathail, V., Deitrich, B.: Meld scheduling: A technique for relaxing scheduling constraints. Technical Report HPL-1997-39, Hewlett Packard Laboratories (February 1997)Google Scholar
  2. 2.
    Altemose, G., Norris, C.: Register pressure responsive software pipelining. In: Proceedings of the 2001 ACM symposium on Applied computing (2001)Google Scholar
  3. 3.
    Arnold, M., Hsiao, M., Kremer, U., Ryder, B.G.: Instruction scheduling in the presence of java’s runtime exceptions. In: Proceedings of the 12th International Workshop on Languages and Compilers for Parallel Computing (2000)Google Scholar
  4. 4.
    Carter, L., Simon, B., Calder, B., Carter, L., Ferrante, J.: Predicated static single assignment. In: Proceedings of the International Conference on Parallel Architectures and Compilation Techniques (1999)Google Scholar
  5. 5.
    Clark, N., Tang, W., Mahlke, S.: Automatically generating custom instruction set extensions. In: Proceedings of the 1st Annual Workshop on Application-Specific Processors (November 2002)Google Scholar
  6. 6.
    Furber, S.: ARM System Architecture. Addison Wesley, Reading (1996)Google Scholar
  7. 7.
    Gallagher, D., Chen, W., Mahlke, S., Gyllenhaal, J., Hwu, W.: Dynamic memory disambiguation using the memory conflict buffer. In: Proceedings of the 6th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 183–195 (1994)Google Scholar
  8. 8.
    Gyllenhaal, J., Hwu, W., Rau, B.R.: Hmdes version 2.0 specification. Technical Report IMPACT-96-3, University of Illinois, Urbana (1996)Google Scholar
  9. 9.
    Hwu, W., Mahlke, S., Chen, W., Chang, P., Warter, N., Bringmann, R., Ouellette, R., Hank, R., Kiyohara, T., Haab, G., Holm, J., Lavery, D.: The superblock: An effective technique for VLIW and superscalar compilation. Journal of Supercomputing (January 1993)Google Scholar
  10. 10.
    Intel Itanium Processors, http://www.intel.com/itanium/
  11. 11.
    Kathail, V., Schlansker, M., Rau, B.R.: HPL-PD architecture specification: Version 1.1. Technical Report HPL-9380 (R.1), Hewlett Packard Laboratories (February 2000)Google Scholar
  12. 12.
    Lam, M.: Software Pipelining: An Effective Scheduling Technique for VLIW Machines. In: Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation, Atlanta, GA, pp. 318–328 (June 1988)Google Scholar
  13. 13.
    Lee, C., Potkonjak, M., Mangione-Smith, W.H.: MediaBench: A Tool for Evaluating and Synthesizing Multimedia and Communications Systems. In: Proceedings of the 30th Annual International Symposium on Microarchitecture (MICRO-30), Research Triangle Park, NC, December 1997. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  14. 14.
    Mahlke, S., Chen, W., Bringmann, R., Hank, R., Hwu, W., Rau, B.R., Schlansker, M.: Sentinel scheduling: a model for compiler-controlled speculative execution. ACM Transactions on Computer Systems 11(4) (November 1993)Google Scholar
  15. 15.
    Mahlke, S., Lin, D., Chen, W., Hank, R., Bringmann, R.: Effective compiler support for predicated execution using the hyperblock. In: Proceedings of the 25th Annual International Symposium on Microarchitecture, pp. 45–54 (December 1992)Google Scholar
  16. 16.
  17. 17.
    Palem, K., Chakrapani, L., Yalamanchili, S.: A framework for compiler driven design space exploration for embedded system customization. In: Proceedings of the 9th Asian Computing Science Conference (December 2004)Google Scholar
  18. 18.
    Rabbah, R., Palem, K.: Data remapping for design space optimization of embedded memory systems. To appear in a Special Issue of the ACM Transactions in Embedded Computing Systems (2003)Google Scholar
  19. 19.
    Rabbah, R., Sandanagobalane, H., Ekpanyapong, M., Wong, W.-F.: Compiler orchestrated prefetching via speculation and predication. In: Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating Systems (October 2004)Google Scholar
  20. 20.
    Rau, B.R.: Iterative Modulo Scheduling. Technical Report HPL-94-115, Hewlett Packard Company (November 1995)Google Scholar
  21. 21.
    Rau, B.R.: Iterative modulo scheduling. Technical Report Technical Report HPL-94-115, Hewlett-Packard Laboratories (November 1995)Google Scholar
  22. 22.
    Rau, B.R., Lee, M., Tirumalai, P., Schlansker, M.: Register allocation for modulo scheduled loops: Strategies, algorithms and heuristics. Technical Report HPL-1992-48, Hewlett Packard Laboratories (May 1992)Google Scholar
  23. 23.
    Rogers, A., Li, K.: Software support for speculative loads. In: Proceedings of the 5th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 38–50 (1992)Google Scholar
  24. 24.
    Schlansker, M., Rau, B.: EPIC: Explicitly Parallel Instruction Computing. IEEE Computer 33(2), 37–45 (2000)Google Scholar
  25. 25.
    Schreiber, R., Aditya, S., Mahlke, S., Kathail, V., Rau, B.R., Cronquist, D., Sivaraman, M.: PICO-NPA: High-level synthesis of nonprogrammable hardware accelerators. Journal of VLSI Signal Processing 31(2) (June 2002)Google Scholar
  26. 26.
    Sias, J.W., zee Ueng, S., Kent, G.A., Steiner, I.M., Nystrom, E.M., Mei, W., Hwu, W.: Field-testing impact epic research results in itanium 2. In: Proceedings of the 31st annual international symposium on Computer architecture (June 2004)Google Scholar
  27. 27.
    Smelyanskiy, M., Mahlke, S., Davidson, E., Lee, H.-H.: Predicate-aware scheduling: A technique for reducing resource constraints. In: Proceedings of the 1st International Symposium on Code Generation and Optimization (March 2003)Google Scholar
  28. 28.
    Standard Performance Evaluation Corporation benchmark suite, http://www.spec.org
  29. 29.
    Talla, S.: Adaptive explicitly parallel instruction computing. PhD thesis, New York University (2000)Google Scholar
  30. 30.
    TRICEPS: A TRIMARAN-based ARM code generator, http://www.trimaran.org/triceps.shtml
  31. 31.
    Tritanium: A trimaran-based Itanium code generator, http://hydrogen.cs.gwu.edu/tritanium
  32. 32.
    Wireless integrated microsystems, http://www.wimserc.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lakshmi N. Chakrapani
    • 1
  • John Gyllenhaal
    • 2
  • Wen-mei W. Hwu
    • 3
  • Scott A. Mahlke
    • 4
  • Krishna V. Palem
    • 1
  • Rodric M. Rabbah
    • 5
  1. 1.Georgia Institute of Technology 
  2. 2.Lawrence Livermore National Laboratory 
  3. 3.University of IllinoisUrbana-Champaign
  4. 4.University of Michigan 
  5. 5.Massachusetts Institute of Technology 

Personalised recommendations