A Focusing Inverse Method Theorem Prover for First-Order Linear Logic

  • Kaustuv Chaudhuri
  • Frank Pfenning
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3632)

Abstract

We present the theory and implementation of a theorem prover for first-order intuitionistic linear logic based on the inverse method. The central proof-theoretic insights underlying the prover concern resource management and focused derivations, both of which are traditionally understood in the domain of backward reasoning systems such as logic programming. We illustrate how resource management, focusing, and other intrinsic properties of linear connectives affect the basic forward operations of rule application, contraction, and forward subsumption. We also present some preliminary experimental results obtained with our implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of Logic and Computation 2, 297–347 (1992)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Galmiche, D., Perrier, G.: Foundations of proof search strategies design in linear logic. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 101–113. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Galmiche, D.: Connection methods in linear logic and proof nets constructions. Theoretical Computer Science 232, 213–272 (2000)Google Scholar
  5. 5.
    Harland, J., Pym, D.J.: Resource-distribution via boolean constraints. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 222–236. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear logic proof search. Theoretical Computer Science 232, 133–163 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Pym, D.J., Harland, J.A.: The uniform proof-theoretic foundation of linear logic programming. Journal of Logic and Computation 4, 175–207 (1994)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hodas, J.S., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Information and Computation 110, 327–365 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mints, G.: Resolution calculus for the first order linear logic. Journal of Logic, Language and Information 2, 59–83 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tammet, T.: Proof strategies in linear logic. Journal of Automated Reasoning 12, 273–304 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cervesato, I., Pfenning, F., Walker, D., Watkins, K.: A concurrent logical framework I & II. Technical Report CMU-CS-02-101 and 102, Department of Computer Science, Carnegie Mellon University (2002) Revised (May 2003)Google Scholar
  12. 12.
    Chaudhuri, K., Pfenning, F.: Focusing the inverse method for linear logic. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 200–215. Springer, Heidelberg (2005) (to appear); an extended version available as Technical Report CMU-CS-05-106, Department of Computer Science, Carnegie Mellon University (2005)Google Scholar
  13. 13.
    Méry, D.: Preuves et Sémantiques dans des Logiques de Ressources. PhD thesis, Université Henri Poincaré, Nancy, France (2004)Google Scholar
  14. 14.
    Donnelly, K., Gibson, T., Krishnaswami, N., Magill, S., Park, S.-W.: The inverse method for the logic of bunched implications. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 466–480. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Chang, B.Y.E., Chaudhuri, K., Pfenning, F.: A judgmental analysis of linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University (2003)Google Scholar
  16. 16.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 179–272. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  17. 17.
    Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 427–441. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. 18.
    Graf, P.: Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Andreoli, J.M.: Focussing and proof construction. Annals of Pure and Applied Logic 107, 131–163 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Mantel, H., Otten, J.: LinTAP: A tableau prover for linear logic. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 217–231. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Tamura, N.: Llprover (last checked)) At (2005), http://bach.istc.kobe-u.ac.jp/llprover
  22. 22.
    Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Annals of Pure and Applied Logic 56, 239–311 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kaustuv Chaudhuri
    • 1
  • Frank Pfenning
    • 1
  1. 1.Department of Computer ScienceCarnegie Mellon University 

Personalised recommendations