Connecting Many-Sorted Theories

  • Franz Baader
  • Silvio Ghilardi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3632)


Basically, the connection of two many-sorted theories is obtained by taking their disjoint union, and then connecting the two parts through connection functions that must behave like homomorphisms on the shared signature. We determine conditions under which decidability of the validity of universal formulae in the component theories transfers to their connection. In addition, we consider variants of the basic connection scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajili, F., Kirchner, C.: A modular framework for the combination of symbolic and built-in constraints. In: Proceedings of Fourteenth International Conference on Logic Programming, Leuven, Belgium, pp. 331–345. The MIT Press, Cambridge (1997)Google Scholar
  2. 2.
    Baader, F., Ghilardi, S.: Connecting many-sorted theories. LTCS-Report LTCS-05-04, TU Dresden, Germany, See (2005),
  3. 3.
    Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word problem that generalizes fusion decidability results in modal logics. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 183–197. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Baader, F., Lutz, C., Sturm, H., Wolter, F.: Fusions of description logics and abstract description systems. Journal of Artificial Intelligence Research 16, 1–58 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baader, F., Tinelli, C.: A new approach for combining decision procedures for the word problem, and its connection to the Nelson-Oppen combination method. In: Proceedings of the 14th International Conference on Automated Deduction, Townsville (Australia). LNCS (LNAI), vol. 1249, pp. 19–33. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Baader, F., Tinelli, C.: Deciding the word problem in the union of equational theories. Information and Computation 178(2), 346–390 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chang, C.-C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, Amsterdam (1990)zbMATHGoogle Scholar
  8. 8.
    Domenjoud, E., Klay, F., Ringeissen, C.: Combination techniques for non-disjoint equational theories. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 267–281. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Fiorentini, C., Ghilardi, S.: Combining word problems through rewriting in categories with products. Theoretical Computer Science 294, 103–149 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Harper & Row, New York (1986)zbMATHGoogle Scholar
  11. 11.
    Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal of Automated Reasoning 33(3–4), 221–249 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics. The Journal of Symbolic Logic 56(4), 1469–1485 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kutz, O., Lutz, C., Wolter, F., Zakharyaschev, M.: \(\mathcal{E}\)-connections of abstract description systems. Artificial Intelligence 156, 1–73 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Makkai, M., Reyes, G.E.: First-Order Categorical Logic. Lecture Notes in Mathematics, vol. 611. Springer, Berlin (1977)zbMATHGoogle Scholar
  15. 15.
    Nelson, G.: Combining satisfiability procedures by equality-sharing. In: Bledsoe, W.W., Loveland, D.W. (eds.) Automated Theorem Proving: After 25 Years. Contemporary Mathematics, vol. 29, pp. 201–211. American Mathematical Society, Providence (1984)Google Scholar
  16. 16.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. on Programming Languages and Systems 1(2), 245–257 (1979)zbMATHCrossRefGoogle Scholar
  17. 17.
    Nipkow, T.: Combining matching algorithms: The regular case. Journal of Symbolic Computation 12, 633–653 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Oppen, D.C.: Complexity, convexity and combinations of theories. Theoretical Computer Science 12, 291–302 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pigozzi, D.: The join of equational theories. Colloquium Mathematicum 30(1), 15–25 (1974)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Spaan, E.: Complexity of Modal Logics. PhD thesis, Department of Mathematics and Computer Science, University of Amsterdam, The Netherlands (1993)Google Scholar
  21. 21.
    Tinelli, C.: Cooperation of background reasoners in theory reasoning by residue sharing. Journal of Automated Reasoning 30(1), 1–31 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of satisfiability procedures. Theoretical Computer Science 290(1), 291–353 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wolter, F.: Fusions of modal logics revisited. In: Advances in Modal Logic. CSLI, Stanford, CA (1998)Google Scholar
  24. 24.
    Zarba, C.: Combining multisets with integers. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 363–376. Springer, Heidelberg (2002)Google Scholar
  25. 25.
    Zawadowski, M.W.: Descent and duality. Ann. Pure Appl. Logic 71(2), 131–188 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Franz Baader
    • 1
  • Silvio Ghilardi
    • 2
  1. 1.Institut für Theoretische InformatikTU Dresden 
  2. 2.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di Milano 

Personalised recommendations