Deciding Monodic Fragments by Temporal Resolution

  • Ullrich Hustadt
  • Boris Konev
  • Renate A. Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3632)


In this paper we study the decidability of various fragments of monodic first-order temporal logic by temporal resolution. We focus on two resolution calculi, namely, monodic temporal resolution and fine-grained temporal resolution. For the first, we state a very general decidability result, which is independent of the particular decision procedure used to decide the first-order part of the logic. For the second, we introduce refinements using orderings and selection functions. This allows us to transfer existing results on decidability by resolution for first-order fragments to monodic first-order temporal logic and obtain new decision procedures. The latter is of immediate practical value, due to the availability of TeMP, an implementation of fine-grained temporal resolution.


Temporal Resolution Temporal Logic Inference Rule Decision Procedure Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, Voronkov (eds.) [22], ch. 2, pp. 19–99.Google Scholar
  2. 2.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)zbMATHGoogle Scholar
  3. 3.
    de Nivelle, H.: Splitting through new proposition symbols. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 172–185. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Degtyarev, A., Fisher, M., Konev, B.: Monodic temporal resolution. ACM Transactions on Computational Logic (To appear)Google Scholar
  5. 5.
    Degtyarev, A.B., Fisher, M., Konev, B.: Monodic temporal resolution. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 397–411. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 16, pp. 997–1072. Elsevier, Amsterdam (1990)Google Scholar
  7. 7.
    Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, Voronkov (eds.) [21], ch. 25, pp. 1791–1850.Google Scholar
  8. 8.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. LICS’99, pp. 295–304. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  10. 10.
    Hodkinson, I.: Monodic packed fragment with equality is decidable. Studia Logica 72(2), 185–197 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic 106, 85–134 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hustadt, U., Konev, B., Riazanov, A., Voronkov, A.: TeMP: A temporal monodic prover. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 326–330. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Hustadt, U., Schmidt, R.A.: Maslov’s class K revisited. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 172–186. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-order temporal resolution. In: Information and Computation (2003) (To appear) Also available as Technical Report ULCS-03-023, Dep. Comp. Sci., Univ. LiverpoolGoogle Scholar
  15. 15.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Towards the implementation of first-order temporal resolution: the expanding domain case. In: Proc. TIME-ICTL 2003, pp. 72–82. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  16. 16.
    Konev, B., Degtyarev, A., Fisher, M.: Handling equality in monodic temporal resolution. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 214–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tableaux. Studia Logica 76(1), 91–134 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Maslov, S.J.: The inverse method for establishing deducibility for logical calculi. In: Orevkov, V.P. (ed.) The Calculi of Symbolic Logic I: Proceedings of the Steklov Institute of Mathematics, vol. 98(1968), pp. 25–96. American Math. Soc, Providence (1971)Google Scholar
  19. 19.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, Voronkov (eds.) [22], ch. 7, pp. 371–443.Google Scholar
  20. 20.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, Voronkov (eds.) [22], ch. 6, pp. 335–370.Google Scholar
  21. 21.
    Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. IJCAI 2001, pp. 611–617. Morgan Kaufmann, San Francisco (2001)Google Scholar
  22. 22.
    Robinson, A., Voronkov, A.(ed.): Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)zbMATHGoogle Scholar
  23. 23.
    Wolter, F., Zakharyaschev, M.: Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied logic 118, 133–145 (2002)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ullrich Hustadt
    • 1
  • Boris Konev
    • 1
  • Renate A. Schmidt
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK
  2. 2.School of Computer ScienceUniversity of ManchesterUK

Personalised recommendations