Deciding Monodic Fragments by Temporal Resolution

  • Ullrich Hustadt
  • Boris Konev
  • Renate A. Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3632)


In this paper we study the decidability of various fragments of monodic first-order temporal logic by temporal resolution. We focus on two resolution calculi, namely, monodic temporal resolution and fine-grained temporal resolution. For the first, we state a very general decidability result, which is independent of the particular decision procedure used to decide the first-order part of the logic. For the second, we introduce refinements using orderings and selection functions. This allows us to transfer existing results on decidability by resolution for first-order fragments to monodic first-order temporal logic and obtain new decision procedures. The latter is of immediate practical value, due to the availability of TeMP, an implementation of fine-grained temporal resolution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, Voronkov (eds.) [22], ch. 2, pp. 19–99.Google Scholar
  2. 2.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer, Heidelberg (1997)MATHGoogle Scholar
  3. 3.
    de Nivelle, H.: Splitting through new proposition symbols. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 172–185. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Degtyarev, A., Fisher, M., Konev, B.: Monodic temporal resolution. ACM Transactions on Computational Logic (To appear)Google Scholar
  5. 5.
    Degtyarev, A.B., Fisher, M., Konev, B.: Monodic temporal resolution. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 397–411. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 16, pp. 997–1072. Elsevier, Amsterdam (1990)Google Scholar
  7. 7.
    Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, Voronkov (eds.) [21], ch. 25, pp. 1791–1850.Google Scholar
  8. 8.
    Fisher, M., Dixon, C., Peim, M.: Clausal temporal resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proc. LICS’99, pp. 295–304. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  10. 10.
    Hodkinson, I.: Monodic packed fragment with equality is decidable. Studia Logica 72(2), 185–197 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hodkinson, I., Wolter, F., Zakharyaschev, M.: Decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic 106, 85–134 (2000)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hustadt, U., Konev, B., Riazanov, A., Voronkov, A.: TeMP: A temporal monodic prover. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 326–330. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Hustadt, U., Schmidt, R.A.: Maslov’s class K revisited. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 172–186. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-order temporal resolution. In: Information and Computation (2003) (To appear) Also available as Technical Report ULCS-03-023, Dep. Comp. Sci., Univ. LiverpoolGoogle Scholar
  15. 15.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Towards the implementation of first-order temporal resolution: the expanding domain case. In: Proc. TIME-ICTL 2003, pp. 72–82. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  16. 16.
    Konev, B., Degtyarev, A., Fisher, M.: Handling equality in monodic temporal resolution. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 214–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tableaux. Studia Logica 76(1), 91–134 (2004)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Maslov, S.J.: The inverse method for establishing deducibility for logical calculi. In: Orevkov, V.P. (ed.) The Calculi of Symbolic Logic I: Proceedings of the Steklov Institute of Mathematics, vol. 98(1968), pp. 25–96. American Math. Soc, Providence (1971)Google Scholar
  19. 19.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, Voronkov (eds.) [22], ch. 7, pp. 371–443.Google Scholar
  20. 20.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, Voronkov (eds.) [22], ch. 6, pp. 335–370.Google Scholar
  21. 21.
    Riazanov, A., Voronkov, A.: Splitting without backtracking. In: Proc. IJCAI 2001, pp. 611–617. Morgan Kaufmann, San Francisco (2001)Google Scholar
  22. 22.
    Robinson, A., Voronkov, A.(ed.): Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)MATHGoogle Scholar
  23. 23.
    Wolter, F., Zakharyaschev, M.: Axiomatizing the monodic fragment of first-order temporal logic. Annals of Pure and Applied logic 118, 133–145 (2002)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ullrich Hustadt
    • 1
  • Boris Konev
    • 1
  • Renate A. Schmidt
    • 2
  1. 1.Department of Computer ScienceUniversity of LiverpoolUK
  2. 2.School of Computer ScienceUniversity of ManchesterUK

Personalised recommendations