Advertisement

An Approach to User-Behavior-Aware Web Applications

  • Stefano Ceri
  • Florian Daniel
  • Vera Demaldé
  • Federico M. Facca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3579)

Abstract

The Adaptive Web is a new research area addressing the personalization of the Web experience for each user. In this paper we propose a new high-level model for the specification of Web applications that take into account the manner users interact with the application for supplying appropriate contents or gathering profile data. We therefore consider entire processes (rather than single properties) as smallest information units, allowing for automatic restructuring of application components. For this purpose, a high-level Event-Condition-Action (ECA) paradigm is proposed, which enables capturing arbitrary (and timed) clicking behaviors. Also, a possible architecture as well as a first prototype implementation are discussed.

References

  1. 1.
    Ceri, S., Daniel, F., Matera, M.: Extending webml for modeling multi-channel context-aware web applications. In: Proceedings of Fourth International Conference on Web Information Systems Engineering Workshops (WISEW 2003), Rome, Italy, December 12 -13, pp. 225–233. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  2. 2.
    Finkelstein, A.C., Savigni, A., Kappel, G., Retschitzegger, W., Kimmerstorfer, E., Schwinger, W., Hofer, T., Pröll, B., Feichtner, C.: Ubiquitous web application development - a framework for understanding. In: Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics (SCI), pp. 431–438 (2002)Google Scholar
  3. 3.
  4. 4.
    Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Specification and design of workflow-driven hypertexts. Journal of Web Engineering (JWE) 1, 163–182 (2003)Google Scholar
  5. 5.
    Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-Intensive Web Applications. Morgan Kauffmann, San Francisco (2002)Google Scholar
  6. 6.
    Facca, F.M., Lanzi, P.L.: Recent developments in web usage mining research. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 140–150. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    WebModels srl: WebRatio, http://www.webratio.com
  8. 8.
    Armani, J., Ceri, S., Demaldè, V.: Modeling of user’s behaviors in web applications: a model and a case study. Technical report, Institute of Communication Technologies, Università della Svizzera italiana (2004)Google Scholar
  9. 9.
    Widom, J.: The starburst active database rule system. IEEE Trans. Knowl. Data Eng. 8, 583–595 (1996)CrossRefGoogle Scholar
  10. 10.
    Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L.: Active rule management in Chimera. In: Active Database Systems: Triggers and Rules for Advanced Database Processing. Morgan Kaufmann, San Francisco (1996)Google Scholar
  11. 11.
    Bonifati, A., Ceri, S., Paraboschi, S.: Active rules for xml: A new paradigm for e-services. The VLDB Journal 10, 39–47 (2001)zbMATHGoogle Scholar
  12. 12.
    Papamarkos, G., Poulovassilis, A., Wood, P.T.: Event-condition-action rule languages for the semantic web. In: Proceedings of SWDB 2003, Berlin, Germany, September 7-8, pp. 309–327 (2003)Google Scholar
  13. 13.
    Stotts, P.D., Furuta, R.: Petri-net-based hypertext: Document structure with browsing semantics. ACM Transactions on Information Systems 7, 3–29 (1989)CrossRefGoogle Scholar
  14. 14.
    Turine, M.A.S., de Oliveira, M.C.F., Masiero, P.C.: A navigation-oriented hypertext model based on statecharts. In: HYPERTEXT 1997: Proceedings of the eighth ACM conference on Hypertext, pp. 102–111. ACM Press, New York (1997)CrossRefGoogle Scholar
  15. 15.
    Bra, P.D., Houben, G.J., Wu, H.: Aham: a dexter-based reference model for adaptive hypermedia. In: Proceedings of the tenth ACM Conference on Hypertext and hypermedia: returning to our diverse roots, pp. 147–156 (1999)Google Scholar
  16. 16.
    Casteleyn, S., Troyer, O.D., Brockmans, S.: Design time support for adaptive behavior in web sites. In: Proceedings of the, ACM symposium on Applied computing, pp. 1222–1228 (2003)Google Scholar
  17. 17.
    Koch, N., Wirsing, M.: The munich reference model for adaptive hypermedia applications. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 213–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Brusilovsky, P.: Adaptive hypermedia. User Modeling and User-Adapted Interaction 11, 87–110 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Cannataro, M., Pugliese, A.: A survey of architectures for adaptive hypermedia. In: Levene, M., Poulovassilis, A. (eds.) Web Dynamics, pp. 357–386. Springer, Berlin (2004)Google Scholar
  20. 20.
    Casteleyn, S., Troyer, O.D., Brockmans, S.: Design time support for adaptive behavior in web sites. In: Proceedings of the, ACM symposium on Applied computing, pp. 1222–1228 (2003)Google Scholar
  21. 21.
    Kobsa, A.: Generic user modeling systems. User Model. User-Adapt. Interact. 11, 49–63 (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    Halasz, F., Schwartz, M.: The Dexter hypertext reference model. Communications of the ACM 37, 30–39 (1994)CrossRefGoogle Scholar
  23. 23.
    Troyer, O.D.: Audience-driven Web Design, pp. 442–462. Idea Group (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stefano Ceri
    • 1
  • Florian Daniel
    • 1
  • Vera Demaldé
    • 2
  • Federico M. Facca
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  2. 2.Istituto di Tecnologie della ComunicazioneUniversità della Svizzera ItalianaLuganoSwitzerland

Personalised recommendations