Ubiquitous Information Retrieval Using Multi-level Characteristics

  • Joonhee Kwon
  • Sungrim Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3579)


Applications of ubiquitous computing are increasingly leveraging contextual information from several sources to provide users with behavior appropriate to their environment. The method of information retrieval is one of the most fundamental research issues in ubiquitous computing. Applications where user’s contexts change continuously over time require prompt retrieval of relevant information. This paper proposes a new ubiquitous retrieval method that enables users to obtain relevant information efficiently using the multi level characteristics of the contexts. This paper describes the ubiquitous information retrieval process. Several experiments are performed and the results verify that proposed method has better retrieval performance.


  1. 1.
    Weiser, M.: The computer for the 21st century. Scientific American 265(30), 94–104 (1991)CrossRefGoogle Scholar
  2. 2.
    Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Anchor article of a special issue on Context-Aware Computing Human-Computer Interaction Journal 16(2-4), 97–166 (2001)Google Scholar
  3. 3.
    Prekop, P., Burnett, M.: Activities, Context and Ubiquitous Computing. Special Issue on Ubiquitous Computing, Computer Communications (Autumn 2002)Google Scholar
  4. 4.
    Brown, P.J., Jones, G.J.F.: Context-aware Retrieval: Exploring a New Environment for Information Retrieval and Information Filtering. In: Personal and Ubiquitous Computing, 2001, December 2001, vol. 5(4), pp. 253–263 (2001)Google Scholar
  5. 5.
    Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing. Computer 34(8), 57–66 (2001)CrossRefGoogle Scholar
  6. 6.
    Kappel, G., Proll, B., Retschitzegger, W., Schwinger, W.: Customisation for Ubiquitous Web Applications - A Comparison of Approaches. International Journal of Web Engineering and Technology 1(1), 79–111 (2003)CrossRefGoogle Scholar
  7. 7.
    Rhodes, B.J., Maes, P.: Just-in-time information retrieval agents. IBM Systems Journal 39(3&4), 685–704 (2000)CrossRefGoogle Scholar
  8. 8.
    Kwon, J., Kim, S., Yoon, Y.: Just-In-Time Recommendation using Multi-Agents for Context-Awareness in Ubiquitous Computing Environment. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 656–669. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules in large databases. In: Proceedings of ACM SIGMOD Conference on Management of Data, Washington, D.C., May 1993, pp. 207–216 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Joonhee Kwon
    • 1
  • Sungrim Kim
    • 2
  1. 1.Department of Computer ScienceKyonggi UniversitySuwon-si, Kyonggi-doKorea
  2. 2.Department of Computer ScienceSeoil CollegeSeoulKorea

Personalised recommendations