Advertisement

Data Integration and Workflow Solutions for Ecology

  • William Michener
  • James Beach
  • Shawn Bowers
  • Laura Downey
  • Matthew Jones
  • Bertram Ludäscher
  • Deana Pennington
  • Arcot Rajasekar
  • Samantha Romanello
  • Mark Schildhauer
  • Dave Vieglais
  • Jianting Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3615)

Abstract

The Science Environment for Ecological Knowledge (SEEK) is designed to help ecologists overcome data integration and synthesis challenges. The SEEK environment enables ecologists to efficiently capture, organize, and search for data and analytical processes. We describe SEEK and discuss how it can benefit ecological niche modeling in which biodiversity scientists require access and integration of regional and global data as well as significant analytical resources.

Keywords

Data Integration Ecological Niche Modeling Semantic Annotation Data Discovery Occurrence Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkley, C., Bowers, S., Jones, M., Ludäscher, B., Schildhauer, M., Tao, J.: Incorporating semantics in scientific workflow authoring. In: SSDBM 2005 (2005)Google Scholar
  2. 2.
    Bowers, S., Ludäscher, B.: An ontology-driven framework for data transformation in scientific workflows. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp. 1–16. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bowers, S., Ludäscher, B.: Actor-oriented design of scientific workflows. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 369–384. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Jones, M.: SEEK EcoGrid: Integrating data and computation resources for ecology. DataBits: An electronic newsletter for Information Managers (Spring 2003)Google Scholar
  5. 5.
    Kennedy, J., Paterson, T., Kukla, R.: Scientific names are ambiguous as identifiers for biological taxa: Their context and definition are required for accurate data integration. In: Ludäscher, B., Raschid, L. (eds.) DILS 2005. LNCS (LNBI), vol. 3615, pp. 80–95. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Computation: Practic & Experience, Special Issue on Scientific Workflows (2005)Google Scholar
  7. 7.
    Peterson, A., Ortega-Huerta, M., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R., Stockwell, D.: Future projections for mexican faunas under global climate change scenarios. Nature, 416 (April 2002)Google Scholar
  8. 8.
    Stockwell, D., Peters, D.: The GARP modelling system: Problems and solutions to automated spatial prediction. Intl. Journal of Geographical Information Science 13 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • William Michener
    • 1
  • James Beach
    • 2
  • Shawn Bowers
    • 3
  • Laura Downey
    • 1
  • Matthew Jones
    • 4
  • Bertram Ludäscher
    • 3
  • Deana Pennington
    • 1
  • Arcot Rajasekar
    • 5
  • Samantha Romanello
    • 1
  • Mark Schildhauer
    • 4
  • Dave Vieglais
    • 2
  • Jianting Zhang
    • 1
  1. 1.LTER Network OfficeUniversity of NewMexico
  2. 2.Biodiversity Research CenterUniversity of Kansas 
  3. 3.Genome Center & Dept. of Computer ScienceUniversity of CaliforniaDavis
  4. 4.NCEASUniversity of CaliforniaSanta Barbara
  5. 5.San Diego Supercomputer CenterUniversity of CaliforniaSan Diego

Personalised recommendations