Advertisement

From Formal Concept Analysis to Contextual Logic

  • Frithjof Dau
  • Julia Klinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3626)

Abstract

A main goal of Formal Concept Analysis from its very beginning has been the support of rational communication. The source of this goal lies in the understanding of mathematics as a science which should encompass both its philosophical basis and its social consequences. This can be achieved by a process named ‘restructuring’. This approach shall be extended to logic, which is based on the doctrines of concepts, judgments, and conclusions. The program of restructuring logic is named Contextual Logic (CL). A main idea of CL is to combine Formal Concept Analysis and Concept Graphs (which are mathematical structures derived from conceptual graphs). Concept graphs mathematize judgments which combine concepts, and conclusions can be drawn by inferring concept graphs from others. So we see that concept graphs can be understood as a crucial part of the mathematical implementation of CL, based on Formal Concept Analysis as the mathematization of the doctrine of concepts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ap89]
    Apel, K.-O.: Begründung. In: Seifert, H., Radnitzky, G. (eds.) Handlexikon der Wissenschaftstheorie, pp. 14–19. Ehrenwirth, München (1989)Google Scholar
  2. [Ar02]
    Arnold, M.: Einführung in die Relationenlogik. Diplomarbeit. FB Mathematik, TU Darmstadt (2002)Google Scholar
  3. [Ba77]
    Barwise, J. (ed.): Handbook of Mathematical Logic. North–Holland Publishing Company, Amsterdam (1977)Google Scholar
  4. [BH03]
    Becker, P., Hereth Correia, J.: The ToscanaJ Suite for Implementing Conceptual Information Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. [Br94]
    Brandom, R.B.: Making it explicit. Reasoning, Representing, and Discursive Commitment. Harvard University Press, Cambridge (1994)Google Scholar
  6. [Br01]
    Brandom, R.B.: Begründen und Begreifen. Eine Einführung in den Inferentialismus. Suhrkamp (2001)Google Scholar
  7. [Da01]
    Dau, F.: Concept Graphs and Predicate Logic. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 72–86. Springer, Berlin (2001)CrossRefGoogle Scholar
  8. [Da03a]
    Dau, F.: The Logic System of Concept Graphs with Negations (and its Relationship to Predicate Logic). Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. [Da03b]
    Dau, F.: Concept Graphs without Negations: Standardmodels and Standardgraphs. In: de Moor, A., Lex, W., Ganter, B. (eds.) Conceptual Structures for Knowledge Creation and Communication, pp. 243–256. Springer, Berlin (2003)CrossRefGoogle Scholar
  10. [DH03]
    Dau, F., Hereth Correia, J.: Nested Concept Graphs: Mathematical Foundations and Applications in Databases. In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures: Contributions to ICCS 2003, pp. 125–141. Shaker Verlag, Aachen (2003)Google Scholar
  11. [GW99a]
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  12. [GW99b]
    Ganter, B., Wille, R.: Contextual Attribute Logic. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 401–414. Springer, Heidelberg (1999)Google Scholar
  13. [Ha81]
    Habermas, J.: Theorie kommunikativen Handelns. 2 Bände. Suhrkamp, Frankfurt (1981)Google Scholar
  14. [He74]
    von Hentig, H.: Magier oder Magister? Über die Einheit der Wissenschaft im Verständigungsprozess. Suhrkamp Verlag, Frankfurt (1974)Google Scholar
  15. [HLSW00]
    Herrmann, C., Luksch, P., Skorsky, M., Wille, R.: Algebras of Semiconcepts and Double Boolean Algebras. Contributions to General Algebra 13 (2000)Google Scholar
  16. [Ka88]
    Kant, I.: Logic. Dover, New York (1988)Google Scholar
  17. [Kl01a]
    Klinger, J.: Simple Semiconcept Graphs: a Boolean Logic Approach. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 115–128. Springer, Berlin (2001)Google Scholar
  18. [Kl01b]
    Klinger, J.: Semiconcept Graphs: Syntax and Semantics, Diplomarbeit, FB Mathematik, TU Darmstadt (2001)Google Scholar
  19. [Kl02]
    Klinger, J.: Semiconcept Graphs with Variables. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)Google Scholar
  20. [KV03]
    Klinger, J., Vormbrock, B.: Contextual Boolean Logic: How did it develop? In: Ganter, B., de Moor, A. (eds.) Using Conceptual Structures: Contributions to ICCS 2003, pp. 143–156. Shaker Verlag, Aachen (2003)Google Scholar
  21. [MSW99]
    Mineau, G., Stumme, G., Wille, R.: Conceptual Structures Represented by Conceptual Graphs and Formal Concept Analysis. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 423–441. Springer, Berlin (1999)CrossRefGoogle Scholar
  22. [Pe35]
    Peirce, C.S.: Collected Papers, pp. 1931–1935. Harvard Uni. Press, CambridgeGoogle Scholar
  23. [Po01]
    Pollandt, S.: Relational Constructions on Semiconcept Graphs. In: Mineau, G. (ed.) Conceptual Structures: Extracting and Representing Semantics. Dept. of Computer Science, pp. 171–185. University Laval, Quebec (2001)Google Scholar
  24. [Po02]
    Pollandt, S.: Relation Graphs - A Structure for Representing Relations in Contextual Logic of Relations. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)Google Scholar
  25. [PoW00]
    Pollandt, S., Wille, R.: On the Contextual Logic of Ordinal Data. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 249–262. Springer, Berlin (2000)Google Scholar
  26. [Pr98a]
    Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen. Shaker Verlag, Aachen (1998)zbMATHGoogle Scholar
  27. [Pr98b]
    Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L., Chein, M. (eds.) Conceptual Structures: Theory, Tools and Application, pp. 225–239. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  28. [Pr00]
    Prediger, S.: Nested Concept Graphs and Triadic Power Context Families: A Situation-Based Contextual Approach. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 249–262. Springer, Berlin (2000)CrossRefGoogle Scholar
  29. [PW99]
    Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W., Cyre, W. (eds.) Conceptual Structures: Standards and Practices, pp. 401–414. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. [Se01]
    Seiler, T.B.: Begreifen und Verstehen: Ein Buch über Begriffe und Bedeutungen. Verlag Allgemeine Wissenschaft, Mühltal (2001)Google Scholar
  31. [SW03]
    Schoolmann, L., Wille, R.: Concept Graphs with Subdivision: a Semantic Approach. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 271–281. Springer, Berlin (2002)Google Scholar
  32. [So84]
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Adison-Wesley, Reading (1984)zbMATHGoogle Scholar
  33. [So92]
    Sowa, J.F.: Conceptual Graphs Summary. In: Nagle, T.E., Nagle, J.A., Gerholz, L.L., Eklund, P.W. (eds.) Conceptual Structures: Current Research and Practice, pp. 3–51. Ellis Horwood (1992)Google Scholar
  34. [Ta00]
    Tappe, J.: Simple Concept Graphs with Universal Quantifiers. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 94–108. Shaker, Achen (2000)Google Scholar
  35. [Wi82]
    Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reiderl, DordrechtGoogle Scholar
  36. [Wi96]
    Wille, R.: Restructuring Mathematical Logic: An Approach based on Peirce’s Pragmatism. In: Ursini, A., Agliano, P. (eds.) Logic and Algebra, Marcel Dekker, New York (1996)Google Scholar
  37. [Wi97]
    Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Delugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) Conceptual Structures: Fullfilling Peirce’s Dream, pp. 290–303. Springer, Berlin (1997)CrossRefGoogle Scholar
  38. [Wi98]
    Wille, R.: Triadic Concept Graphs. In: Mugnier, M.-L., Chein, M. (eds.) Conceptual Structures: Theory, Tools and Application, pp. 194–208. Springer, Berlin (1998)CrossRefGoogle Scholar
  39. [Wi00a]
    Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 317–331. Springer, Berlin (2000)CrossRefGoogle Scholar
  40. [Wi00b]
    Wille, R.: Contextual Logic Summary. In: Stumme, G. (ed.) Working with Conceptual Structures. Contributions to ICCS 2000, pp. 256–276. Shaker, Aachen (2000)Google Scholar
  41. [Wi00c]
    Wille, R.: Lecture Notes on Contextual Logic of Relations. FB4-Preprint, TU Darmstadt (2000)Google Scholar
  42. [Wi01]
    Wille, R.: Boolean Judgment Logic. In: Delugach, H.S., Stumme, G. (eds.) Conceptual Structures: Broadening the Base, pp. 115–128. Springer, Berlin (2001)CrossRefGoogle Scholar
  43. [Wi02a]
    Wille, R.: Existential Concept Graphs of Power Context Families. In: Priss, U., Corbett, D., Angelova, G. (eds.) Conceptual Structures: Integration and Interfaces, pp. 382–396. Springer, Berlin (2002)CrossRefGoogle Scholar
  44. [Wi02b]
    Wille, R.: The Contextual-Logic Structure of Distinctive Judgments. In: Priss, U., Corbett, D., Angelova, G. (eds.) Foundations and Applications of Conceptual Structures - Contributions to ICCS 2002, pp. 92–101. Bulgarian Academiy of Sciences (2002)Google Scholar
  45. [Wi02c]
    Wille, R.: Transdisziplinarität und Allgemeine Wissenschaft. FB4-Preprint No. 2200, TU Darmstadt (2002)Google Scholar
  46. [Wi03]
    Wille, R.: Conceptual Content as Information - Basics for Contetxual Judgment Logic. In: de Moor, A., Lex, W., Ganter, B. (eds.) Conceptual Structures for Knowledge Creation and Communication, pp. 1–15. Springer, Berlin (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Frithjof Dau
    • 1
  • Julia Klinger
    • 1
  1. 1.Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations