Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research

  • Sergei O. Kuznetsov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3626)


A retrospective survey of several research directions at the All-Soviet (now All-Russia) Institute for Scientific and Technical Information (VINITI), as well as research represented in several VINITI editions, is proposed. In a number of papers of the 1970-1980s, taxonomies (classifications) were naturally considered as lattices. Several problems of classification required consideration of tolerance relations as a model of similarity of objects. Such relations define symmetric formal contexts. A JSM-method of inductive plausible reasoning, which has been developed at VINITI since the early 1980s, is considered in terms of Galois connections and concept lattices. Mathematical research around the JSM-method and its applications is discussed.


Version Space Information Gain Concept Lattice Target Attribute Formal Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anshakov, O.M.: On a data lattice for the JSM-method of automated hypothesis generation. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5-6), 33–36 (1996) (in Russian)Google Scholar
  2. 2.
    Anshakov, O.M.: Causal models of subject domains. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(3), 3–16 (2000) (in Russian)Google Scholar
  3. 3.
    Anshakov, O.M., Skvortsov, D.P., Finn, V.K.: Logical Means of Expert Systems of JSM-type. Semiotika i Informatika 28, 65–101 (1986) (in Russian)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Anshakov, O.M., Skvortsov, D.P., Ivashko, V.G., Finn, V.K.: Logical Means of the JSM-method of Automated Hypothesis Generation: Main Notions and System of Inference Rules. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(9), 10–18 (1987) (in Russian)Google Scholar
  5. 5.
    Anshakov, O.M., Finn, V.K., Skvortsov, D.P.: On axiomatization of manyvalued logics associated with the formalization of plausible reasonings. Stud. Log. 25(4), 23–47 (1989)MathSciNetGoogle Scholar
  6. 6.
    Birkhoff, G.D.: Lattice Theory. Amer. Math. Soc, Providence (1979)zbMATHGoogle Scholar
  7. 7.
    Blinova, V.G.: Results of Application of the JSM-method of Hypothesis Generation to Problems of Analyzing the Relation “Structure of a Chemical Compound - Biological Activity. Autom. Docum. Math. Ling. 29(3), 26–33 (1995)MathSciNetGoogle Scholar
  8. 8.
    Blinova, V.G., Dobrynin, D.A.: Languages for Representing Chemical Structures in Intelligent Systems of Drug Design. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(6), 14–21 (2000) (in Russian)Google Scholar
  9. 9.
    Blinova, V.G., Dobrynin, D.A., Finn, V.K., Kuznetsov, S.O., Pankratova, E.S.: Toxicology analysis by means of the JSM-method. Bioinformatics 19, 1201–1207 (2003)CrossRefGoogle Scholar
  10. 10.
    Bochvar, D.A.: On a three-valued calculus and its application to the analysis of paradoxes of the classical extended functional calculus. Matematicheskii sbornik (2), 287–308 (1938) (in Russian)Google Scholar
  11. 11.
    Borshev, V.B., Brudno, V.A., Khomyakov, M.V.: Algebraic Description of the Structure of Dependencies in a Database. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(3), 17–18 (1977) (in Russian)Google Scholar
  12. 12.
    Budunova, A.P., Poroikov, V.V., Blinova, V.G., Finn, V.K.: The JSM-method of hypothesis generation: Application for analysis of the relation “Structure - hepatoprotective detoxifying activity. Nauchno-Tekhnicheskaya Informatsiya (7), 12–15 (1993) (in Russian)Google Scholar
  13. 13.
    Data Mining Cup (DMC),
  14. 14.
    Dunaev, V.V., Polyakov, O.M.: Methodological Aspects of Relational Classification Theory. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(4), 21–27 (1987) (in Russian)Google Scholar
  15. 15.
    Fabrikantova, E.F.: Problems of computer modeling of metabolic transformations of xenobiotics in a human organism Itogi Nauki i Tekhniki. Seriya Informatika 15, 115–135 (1991) (in Russian)Google Scholar
  16. 16.
    Ferré, S., Ridoux, O.: The use of associative concepts in the incremental building of a logical context. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 299–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Finn, V.K.: On Machine-oriented Formalization of Plausible Reasoning in F.Bacon-J.S.Mill Style. Semiotika i Informatika (20), 35–101 (1983) (in Russian)Google Scholar
  18. 18.
    Finn, V.K.: Plausible Reasoning in Systems of JSM Type, Itogi Nauki i Tekhniki. Seriya Informatika 15, 54–101 (1991) (in Russian)Google Scholar
  19. 19.
    Finn, V.K.: On a variant of argumentation logic. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5-6), 3–19 (1996) (in Russian)MathSciNetGoogle Scholar
  20. 20.
    Finn, V.K.: Synthesis of cognitive procedures and the problem of induction. Nauchno-Tekhnicheskaya Informatsiya, ser. 2(1-2), 8–44 (1999) (in Russian)Google Scholar
  21. 21.
    Finn, V.K., Mikheyenkova, M.A.: On logical means of conceptualization of opinion analysis. Nauchno-Tekhnicheskaya Informatsiya 2(6), 4–21 (2002) (in Russian)Google Scholar
  22. 22.
    Galitsky, B.A., Kuznetsov, S.O., Samokhin, M.V.: Analyzing Conflicts with Concept-Based Learning. In: Dau, F., Mugnier, M.-L., Stumme, G. (eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 307–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Ganter, B., Grigoriev, P.A., Kuznetsov, S.O., Samokhin, M.V.: Concept-based data mining with scaled labeled graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Ganter, B., Kuznetsov, S.O.: Formalizing Hypotheses with Concepts. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 342–356. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Ganter, B., Kuznetsov, S.O.: Hypotheses and Version Spaces. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 83–95. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  28. 28.
    Gergely, T., Finn, V.K.: On Solver of “Plausible Inference + Deduction” Type, in Intelligent Information-Computing Systems. In: Artif. Intel. IFAC Ser., vol. (9). Pergamon Press, London (1984)Google Scholar
  29. 29.
    Grigoriev, P.A.: SWORD-systems or JSM-systems for strings employing statistical considerations. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5-6), 45–51 (1996) (in Russian)MathSciNetGoogle Scholar
  30. 30.
    Grigoriev, P.A.: On computer forecast of repeated hypophysis adenoma. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(1-2), 83–88 (1999) (in Russian)Google Scholar
  31. 31.
    Grigoriev, P.A., Kuznetsov, S.O., Obiedkov, S.A., Yevtushenko, S.A.: On a Version of Mill’s Method of Difference. In: Proc. ECAI 2002 Int. Workshop on Advances in Formal Concept Analysis for Knowledge Discovery in Databases, Lyon, pp. 26–31 (2002)Google Scholar
  32. 32.
    Grigoriev, P.A., Yevtushenko, S.A.: Elements of an agile discovery environment. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 311–319. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Grigoriev, P.A., Yevtushenko, S.A., Grieser, G.: QuDA, a data miner’s discovery enviornment, Tech. report, FG Intellektik, FB Informatik, Technische Universität Darmstadt, AIDA 03 06 (2003),
  34. 34.
    Gusakov, V.Y., Yakubovich, S.M.: Galois Connection and Some Theorems on Representing Binary Relations. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(7), 3–6 (1974) (in Russian) Google Scholar
  35. 35.
    Gusakov, V.Y., Yakubovich, S.M.: On Classification Algorithms. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(12), 17–22 (1976) (in Russian) Google Scholar
  36. 36.
    Gusakova, S.M., Finn, V.K.: On Formalization of Local and Global Similarities. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(6), 16–19 (1986) (in Russian) Google Scholar
  37. 37.
    Gusakova, S.M.: Canonical Representation of Similarities. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(9), 19–22 (1987) (in Russian) Google Scholar
  38. 38.
    Gusakova, S.M., Finn, V.K.: On New Means for Formalization of Local and Global Similarities. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(10), 14–22 (1987) (in Russian) Google Scholar
  39. 39.
    Gusakova, S.M., Finn, V.K.: Similarity and Plausible Reasoning. Izvestia Akademii Nauk (Tekhnicheskaya Kibernetika) (5), 42–63 (1987) (in Russian) Google Scholar
  40. 40.
    Gusakova, S.M., Mikheenkova, M.A., Finn, V.K.: On Logical Means for Automated Analysis of Opinions. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5), 4–24 (2001) (in Russian) Google Scholar
  41. 41.
    Gusakova, S.M.: Paleography with JSM-method. Technical Report, VINITI (2001)Google Scholar
  42. 42.
    Hirsh, H.: Generalizing Version Spaces. Machine Learning 17, 5–46 (1994)zbMATHGoogle Scholar
  43. 43.
    Kuznetsov, S.O.: On the lattice on graph sets for graphs with ordered vertex labels. In: Proc. Workshop on Semiotical Aspects of Formalization of Intelligent Activity, Borzhomi (Georgia, USSR), vol. 1, pp. 204–207 (1988) (in Russian) Google Scholar
  44. 44.
    Kuznetsov, S.O.: Similarity operation on hypergraphs as as a Basis of Plausible Inference. In: Proc. 1st Soviet Conference on Artificial Intelligence, vol. 1, pp. 442–448 (1988) (in Russian) Google Scholar
  45. 45.
    Kuznetsov, S.O.: Interpretation on Graphs and Complexity Characteristics of a Search for Specific Patterns. Nauchn. Tekh. Inf., Ser (Automat. Document. Math. Linguist.) 2(1), 23–27 (1989) (in Russian) Google Scholar
  46. 46.
    Kuznetsov, S.O.: JSM-method as a machine learning method Itogi. Nauki i Tekhniki, ser. Informatika 15, 17–50 (1991)Google Scholar
  47. 47.
    Kuznetsov, S.O.: Mathematical aspects of concept analysis, Journal of Mathematical Science. Journal of Mathematical Science. Ser. Contemporary Mathematics and Its Applications 18, 1654–1698 (1996) (in Russian) Google Scholar
  48. 48.
    Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  49. 49.
    Kuznetsov, S.O.: On Computing the Size of a Lattice and Related Decision Problems. Order 18(4), 313–321 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Kuznetsov, S.O.: Machine learning and formal concept analysis. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  51. 51.
    Kuznetsov, S.O.: Learning in Concept Lattices from Positive and Negative Examples. Discrete Applied Mathematics 142, 111–125 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  52. 52.
    Kuznetsov, S.O., Finn, V.K.: Extension of Expert Systems of JSM-type to Graphs. Izvestia AN SSSR, ser. Tekhn. Kibern. (5), 4–11 (1988)Google Scholar
  53. 53.
    Kuznetsov, S.O., Finn, V.K.: On a model of learning and classification based on similarity operation. Obozrenie Prikladnoi i Promyshlennoi Matematiki 3(1), 66–90 (1996)zbMATHGoogle Scholar
  54. 54.
    Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)zbMATHCrossRefGoogle Scholar
  55. 55.
    Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chemical applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  56. 56.
    Leibov, A.E.: Some methods of realization of the similarity operations for chemically oriented expert systems of JSM type. Nauchno-Tekhnicheskaya Informatsiya, Ser 2(5-6), 20–32 (1996) (in Russian) Google Scholar
  57. 57.
    Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)Google Scholar
  58. 58.
    Matveev, A.A., Fabrikantova, E.F.: Algorithmic and Programming Means for Metabolism Forecasting. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(6), 26–34 (2002) (in Russian) Google Scholar
  59. 59.
    Meien, S.V., Shreider, Y.A.: Methodological Aspects of Classification Theory. Problemy Filosofii (12), 67–69 (1976) (in Russian) Google Scholar
  60. 60.
    van der Merwe, D., Obiedkov, S., Kourie, D.G.: AddIntent: A new incremental algorithm for constructing concept lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  61. 61.
    Mikheenkova, M.A., Avidon, V.V., Sukhanova, S.A.: On Program Realization of the JSM-method of Automated Hypothesis Generation with Nonelement set of attributes. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(11), 20–26 (1984) (in Russian) Google Scholar
  62. 62.
    Mikheenkova, M.A., Finn, V.K.: On a Class of Expert Systems with Incomplete Information. Izvestia AN SSSR, ser. Tekhn. Kibern (5), 82–103 (1986) (in Russian) Google Scholar
  63. 63.
    Mill, J.S.: A System of Logic. Ratiocinative and Inductive, London (1843)Google Scholar
  64. 64.
    Mitchell, T.: Generalization as Search. Artificial Intelligence 18(2) (1982)Google Scholar
  65. 65.
    Mitchell, T.: Machine Learning. The McGraw-Hill Companies, New York (1997)zbMATHGoogle Scholar
  66. 66.
    Nicolas, J.M.: Mutual Dependencies and Some Results on Undecomposable Relations. In: Proc. 4th Int. Conf. on Very Large Data Bases, West Berlin, pp. 360–376 (1978)Google Scholar
  67. 67.
    Obiedkov, S.: Modal logic for evaluating formulas in incomplete contexts. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 314–325. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  68. 68.
    Obiedkov, S.A., Duquenne, V.: Incremental Construction of the Canonical Implication Basis. In: Proc. International Conference Journee de l’Informatique Messine (JIM 2003), Metz (2003); To appear in Discrete Applied Mathematics (2005)Google Scholar
  69. 69.
    Pankratova, E.S., Pankratov, D.V., Finn, V.K., Shabalova, I.P.: Application of the JSM-method for forecasting high pathogenicity viruses of human papilloma. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(6), 22–25 (2002) (in Russian) Google Scholar
  70. 70.
    Panova, N.S., Shreider, Y.A.: On Symbolic Nature of Classification. Nauchno- Tekhnicheskaya Informatsiya, Ser. 2(12), 3–10 (1974) (in Russian) Google Scholar
  71. 71.
    Popov, D.V., Blinova, V.G., Pankratova, E.S.: Drug Design: JSM-method of Hypothesis Generation for Antitumor Activity and Toxic Effects Forecast with Respect to Plant Products. In: FECS 5th Int. Conf. Chem. and Biotechnol. Biologica. Act. Nat. Prod., Varna, Bulgaria, September 18-23, pp. 437–440 (1989)Google Scholar
  72. 72.
    Polyakov, O.M., Dunaev, V.V.: Classification Schemes: Synthesis through Relations. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(6), 15–21 (1985) (in Russian) Google Scholar
  73. 73.
    Polyakov, O.M.: Classification Data Model. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(9), 13–20 (1986) (in Russian) Google Scholar
  74. 74.
    Polyakov, O.M.: On Systematization. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(12), 21–28 (1988) (in Russian) MathSciNetGoogle Scholar
  75. 75.
    Quinlan, J.R.: Induction on Decision Trees. Machine Learning 1(1), 81–106 (1986)Google Scholar
  76. 76.
    Raskina, A.A., Sidorov, I.S., Shreider, Y.A.: Semantical Foundations of Object-Attribute Languages. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5), 18–25 (1976) (in Russian) Google Scholar
  77. 77.
    Shreider, Y.A.: Mathematical Model of Classification Theory, pp. 1–36. VINITI, Moscow (1968) (in Russian) Google Scholar
  78. 78.
    Shreider, Y.A.: Equality, Similarity, Order, Moscow, Nauka (1971) (in Russian) Google Scholar
  79. 79.
    Shreider, Y.A.: Logic of Classification. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5), 3–7 (1973) (in Russian) MathSciNetGoogle Scholar
  80. 80.
    Shreider, Y.A.: Algebra of Classification. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(9), 3–6 (1974) (in Russian) Google Scholar
  81. 81.
    Shreider, Y.A.: Typology as a Base of Classification. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(11), 1–5 (1981) (in Russian) MathSciNetGoogle Scholar
  82. 82.
    Soergel, D.: Mathematical Analysis of Documentation Systems. Inf. Stor. Retr. (3), 129–173 (1967)Google Scholar
  83. 83.
    Tsalenko, M.S.: Semantical and Mathematical Models of Databases. Itogi Nauki i Tekhniki, Ser. Informatika 9, 3–207 (1985) (in Russian) Google Scholar
  84. 84.
    Tsalenko, M.S.: Canonical Representation of Irreducible Systems and Classification Schemes. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(1), 30–34 (1985) (in Russian) Google Scholar
  85. 85.
    Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  86. 86.
    Vinogradov, D.V.: Logical Programms for Quasi-Axiomatic Theories. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(1-2), 61–64 (1999) (in Russian) Google Scholar
  87. 87.
    Vinogradov, D.V.: Formalization of Plausible Reasoning in FOPL. Nauchno- Tekhnicheskaya Informatsiya, Ser. 2(11), 17–20 (2000) (in Russian) Google Scholar
  88. 88.
    Vinogradov, D.V.: Correct Logical Programms for Plausible Reasoning. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5), 25–27 (2001) (in Russian) Google Scholar
  89. 89.
    Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)Google Scholar
  90. 90.
    Wille, R.: Conceptual Structures of multicontexts. In: Eklund, P.W., Ellis, G., Mann, G. (eds.) Conceptual Structure Representation as Interlingua, pp. 23–39. Springer, Heidelberg (1996)Google Scholar
  91. 91.
    Yakubovich, S.M.: Axiomatic Theory of Similarity. Nauchno- Tekhnicheskaya Informatsiya, Ser. 2(10), 15–19 (1968) (in Russian)Google Scholar
  92. 92.
    Yakubovich, S.M.: On Properties of Conjugated Tolerance Spaces. Information Problems of Semiotics, Linguistics, and Machine Translation 1, 116–123 (1971) (in Russian)Google Scholar
  93. 93.
    Yakubovich, S.M. (Gusakova), Decomposition of Tolerance Spaces. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(3), 26–28 (1973) (in Russian)Google Scholar
  94. 94.
    Zabezhailo, M.I., Finn, V.K., Avidon, A.V., Blinova, V.G., et al.: On experiments with a database using JSM-method of hypothesis generation. Nauchno- Tekhnicheskaya Informatsiya, Ser. 2(2), 28–32 (1983)Google Scholar
  95. 95.
    Zabezhailo, M.I., Ivashko, V.G., Kuznetsov, S.O., Mikheenkova, M.A., Khazanovskii, K.P., Anshakov, O.M.: Algorithmic and Program Means of JSM-method Of Automatic Hypothesis Generation. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(10), 1–14 (1987) (in Russian)Google Scholar
  96. 96.
    Zabezhailo, M.I.: On search problems arising in automatic hypothesis generation with JSM-method. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(1), 28–31 (1988)Google Scholar
  97. 97.
    Zabezhailo, M.I.: Formal models of reasoning in decision making: Applications of the JSM-method in systems of intelligent control and automation of scientific research. Nauchno-Tekhnicheskaya Informatsiya, Ser. 2(5-6), 20–32 (1996) (in Russian)Google Scholar
  98. 98.
    Zeeman, E.C.: The Topology of Brain and Visual Perception. In: Ford, K.M. (ed.) The Topology of 3-Manifolds and Related Topics, pp. 240–256. Prentice Hall, Englewood Cliffs (1965)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sergei O. Kuznetsov
    • 1
  1. 1.All-Russia Institute for Scientific and Technical Information (VINITI)MoscowRussia

Personalised recommendations