Gabor Feature Based Classification Using 2D Linear Discriminant Analysis for Face Recognition

  • Ming Li
  • Baozong Yuan
  • Xiaofang Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3546)


This paper introduces a novel 2D Gabor-Fisher Classifier for face recognition. The 2D-GFC method applies the 2D Fisher Linear Discriminant Analysis (2D-LDA) to the gaborfaces which is derived from the Gabor wavelets representation of face images. In our method, Gabor wavelets first derive desirable facial features characterized by spatial frequency, spatial locality, and orientation selectivity to cope with the variations due to illumination and facial expression changes. 2D-LDA is then used to enhance the face recognition performance by maximizing the Fisher’s linear projection criterion. To evaluate the performance of 2D-GFC, experiments were conducted on FERET database with several other methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samal, A., Iyengar, P.: Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey. Pattern Recognition 25, 65–77 (1992)CrossRefGoogle Scholar
  2. 2.
    Chellappa, R., Wilson, C., Sirohey, S.: Human and machine recognition of faces: A survey. Proceedings of the IEEE 83(5), 705–740 (1995)CrossRefGoogle Scholar
  3. 3.
    Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face Recognition: A Literature Survey (2000),
  4. 4.
    DeValois, R., DeVolois, K.: Spatial Vision. Oxford Press, Oxford (1998)Google Scholar
  5. 5.
    Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P., Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 42, 300–311 (1993)CrossRefGoogle Scholar
  6. 6.
    Wiskott, L., Fellous, J.M., Kruger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 775–779 (1997)CrossRefGoogle Scholar
  7. 7.
    Ki-Chung, C., Cheol, K.S., Ryong, K.S.: Face Recognition Using Principal Component Analysis of Gabor Filter Responses. In: Proceedings of International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, pp. 53–57 (1999)Google Scholar
  8. 8.
    Liu, C., Wechsler, H.: Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Trans. Image Processing 11(4), 467–476 (2002)CrossRefGoogle Scholar
  9. 9.
    Shen, L., Bai, L.: Gabor wavelets and kernel direct discriminant analysis for face recognition. In: Proc. 17th Int’l Conf on Pattern Recognition (ICPR 2004), pp. 284–287 (2004)Google Scholar
  10. 10.
    Yang, P., Shan, S., Gao, W., Li, S.Z., Zhang, D.: Face Recognition Using Ada-Boosted Gabor Features. In: Proc. 6th IEEE Int’l Conf on Automatic Face and Gesture Recognition( FGR 2004), pp. 356–361 (2004)Google Scholar
  11. 11.
    Field, D.J.: What is the goal of sensory coding. Neural. Comput. 6, 559–601 (1994)CrossRefGoogle Scholar
  12. 12.
    Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton (1961)MATHGoogle Scholar
  13. 13.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  14. 14.
    Li, M., Yuan, B.: A Novel Statistical Linear Discriminant Analysis for Image Matrix: Two-Dimensional Fisherfaces. In: Proc. 7th Int’l Conf on Signal Processing, ICSP 2004 (2004)Google Scholar
  15. 15.
    Phililips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. Image and Vision Computing 16, 295–306 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ming Li
    • 1
  • Baozong Yuan
    • 1
  • Xiaofang Tang
    • 1
  1. 1.Institute of Information ScienceBeijing Jiaotong UniversityBeijingChina

Personalised recommendations