A Novel Approach to Combining Client-Dependent and Confidence Information in Multimodal Biometrics

  • Norman Poh
  • Samy Bengio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3546)

Abstract

The issues of fusion with client-dependent and confidence information have been well studied separately in biometric authentication. In this study, we propose to take advantage of both sources of information in a discriminative framework. Initially, each source of information is processed on a per expert basis (plus on a per client basis for the first information and on a per example basis for the second information). Then, both sources of information are combined using a second-level classifier, across different experts. Although the formulation of such two-step solution is not new, the novelty lies in the way the sources of prior knowledge are incorporated prior to fusion using the second-level classifier. Because these two sources of information are of very different nature, one often needs to devise special algorithms to combine both information sources. Our framework that we call “Prior Knowledge Incorporation” has the advantage of using the standard machine learning algorithms. Based on 10 × 32=320 intramodal and multimodal fusion experiments carried out on the publicly available XM2VTS score-level fusion benchmark database, it is found that the generalisation performance of combining both information sources improves over using either or none of them, thus achieving a new state-of-the-art performance on this database.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kittler, J., Matas, G., Jonsson, K., Sanchez, M.: Combining Evidence in Personal Identity Verification Systems. Pattern Recognition Letters 18(9), 845–852 (1997)CrossRefGoogle Scholar
  2. 2.
    Saeta, J.R., Hernando, J.: On the Use of Score Pruning in Speaker Verification for Speaker Dependent Threshold Estimation. In: The Speaker and Language Recognition Workshop (Odyssey), Toledo, pp. 215–218 (2004)Google Scholar
  3. 3.
    Fiérrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J.: Target dependent score normalization techniques and their application to signature verification. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 498–504. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Jain, A., Ross, A.: Learning User-Specific Parameters in Multibiometric System. In: Proc. Int’l Conf. of Image Processing (ICIP 2002), New York, pp. 57–70 (2002)Google Scholar
  5. 5.
    Kumar, A., Zhang, D.: Integrating Palmprint with Face for User Authentication. In: Workshop on Multimodal User Authentication (MMUA 2003), Santa Barbara, pp. 107–112 (2003)Google Scholar
  6. 6.
    Toh, K.-A., Yau, W.-Y., Lim, E., Chen, L., Ng, C.-H.: Fusion of Auxiliary Information for Multimodal Biometric Authentication. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 678–685. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Bigun, J., Fierrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J.: Multimodal Biometric Authentication using Quality Signals in Mobile Communnications. In: 12th Int’l Conf. on Image Analysis and Processing, Mantova, pp. 2–11 (2003)Google Scholar
  8. 8.
    Fierrez-Aguilar, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J., Bigun, J.: Kernel-Based Multimodal Biometric Verification Using Quality Signals. In: Defense and Security Symposium, Workshop on Biometric Technology for Human Identification, Proc. of SPIE, vol. 5404, pp. 544–554 (2004)Google Scholar
  9. 9.
    Garcia-Romero, D., Fierrez-Aguilar, J., Gonzalez-Rodriguez, J., Ortega-Garcia, J.: On the Use of Quality Measures for Text Independent Speaker Recognition. In: The Speaker and Language Recognition Workshop (Odyssey), Toledo, pp. 105–110 (2004)Google Scholar
  10. 10.
    Sanderson, C., Paliwal, K.K.: Information Fusion and Person Verification using Speech and Face Information. In: IDIAP-RR 22, IDIAP (2002)Google Scholar
  11. 11.
    Poh, N., Bengio, S.: Database, Protocol and Tools for Evaluating Score-Level Fusion Algorithms in Biometric Authentication. Research Report 04-44, IDIAP, Martigny, Switzerland (2004); Accepted for publication in AVBPA 2005Google Scholar
  12. 12.
    Poh, N., Bengio, S.: Improving Single Modal and Multimodal Biometric Authentication Using F-ratio Client Dependent Normalisation. Research Report 04-52, IDIAP, Martigny, Switzerland (2004)Google Scholar
  13. 13.
    Auckenthaler, R., Carey, M., Lloyd-Thomas, H.: Score Normalization for Text- Independant Speaker Verification Systems. Digital Signal Processing (DSP) Journal 10, 42–54 (2000)CrossRefGoogle Scholar
  14. 14.
    Ben, M., Blouet, R., Bimbot, F.: A Monte-Carlo Method For Score Normalization in Automatic Speaker Verification Using Kullback-Leibler Distances. In: Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Orlando, vol. 1, pp. 689–692 (2002)Google Scholar
  15. 15.
    Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1999)Google Scholar
  16. 16.
    Poh, N., Bengio, S.: Improving Fusion with Margin-Derived Confidence in Biometric Authentication Tasks. Research Report 04-63, IDIAP, Martigny, Switzerland (2004); Accepted for publication in AVBPA 2005Google Scholar
  17. 17.
    Bengio, S., Mariéthoz, J.: A Statistical Significance Test for Person Authentication. In: The Speaker and Language Recognition Workshop (Odyssey), Toledo, pp. 237–244 (2004)Google Scholar
  18. 18.
    Matas, J., Hamouz, M., Jonsson, K., Kittler, J., Li, Y., Kotropoulos, C., Tefas, A., Pitas, I., Tan, T., Yan, H., Smeraldi, F., Begun, J., Capdevielle, N., Gerstner, W., Ben-Yacoub, S., Abdeljaoued, Y., Mayoraz, E.: Comparison of Face Verification Results on the XM2VTS Database. In: Proc. 15th Int’l Conf. Pattern Recognition, Barcelona, vol. 4, pp. 858–863 (2000)Google Scholar
  19. 19.
    Martin, A., Doddington, G., Kamm, T., Ordowsk, M., Przybocki, M.: The DET Curve in Assessment of Detection Task Performance. In: Proc. Eurospeech 1997, Rhodes, pp. 1895–1898 (1997)Google Scholar
  20. 20.
    Bengio, S., Mariéthoz, J.: The Expected Performance Curve: a New Assessment Measure for Person Authentication. In: The Speaker and Language Recognition Workshop (Odyssey), Toledo, pp. 279–284 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Norman Poh
    • 1
  • Samy Bengio
    • 1
  1. 1.IDIAP Research InstituteMartignySwitzerland

Personalised recommendations