Comparative Assessment of Content-Based Face Image Retrieval in Different Color Spaces

  • Peichung Shih
  • Chengjun Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3546)


Content-based face image retrieval is concerned with computer retrieval of face images (of a given subject) based on the geometric or statistical features automatically derived from these images. It is well known that color spaces provide powerful information for image indexing and retrieval by means of color invariants, color histogram, color texture, etc.. This paper assesses comparatively the performance of content-based face image retrieval in different color spaces using a standard algorithm, the Principal Component Analysis (PCA), which has become a popular algorithm in the face recognition community. In particular, we comparatively assess 12 color spaces (RGB, HSV, YUV, YCbCr, XYZ, YIQ, L * a * b *, U * V * W *, L * u * v *, I 1 I 2 I 3, HSI, and rgb) by evaluating 7 color configurations for every single color space. A color configuration is defined by an individual or a combination of color component images. Take the RGB color space as an example, possible color configurations are R, G, B, RG, RB, GB, and RGB. Experimental results using 1,800 FERET R, G, B images corresponding to 200 subjects show that some color configurations, such as R in the RGB color space and V in the HSV color space, help improve face retrieval performance.


Color Space Retrieval Performance Kernel Principal Component Analysis Chromaticity Diagram Cosine Similarity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao, W., Chellappa, R., Phillips, J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys 35, 399–458 (2003)CrossRefGoogle Scholar
  2. 2.
    Stiefelhagen, R., Yang, J., Waibel, A.: Modeling focus of attention for meeting index based on multiple cues. IEEE Trans. Neural Networks 13, 928–938 (2002)CrossRefGoogle Scholar
  3. 3.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)zbMATHGoogle Scholar
  4. 4.
    Liu, C.: Gabor-based kernel PCA with fractional power polynomial m odels for face recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 26, 572–581 (2004)CrossRefGoogle Scholar
  5. 5.
    Liu, C., Wechsler, H.: Robust coding schemes for indexing and retrieval from large face databases. IEEE Trans. on Image Processing 9, 132–137 (2000)CrossRefGoogle Scholar
  6. 6.
    Zhao, W., Chellappa, R.: Symmetric shape-from-shading using self-ratio image. Int. Journal Computer Vision 45, 55–75 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Yu, H., Yang, J.: A direct lda algorithm for high-dimensional data - with application to face recognition. Pattern Recognition 34, V2067–V2070 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 13, 71–86 (1991)CrossRefGoogle Scholar
  9. 9.
    Garcia, C., Tziritas, G.: Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans. Multimedia 1, 264–277 (1999)CrossRefGoogle Scholar
  10. 10.
    Habili, N., Lim, C.: Hand and face segmentation using motion and color cues in digital image sequences. In: Proc. IEEE International Conference on Multimedia and Expo 2001, Tokyo, Japan (2001)Google Scholar
  11. 11.
    Wu, H., Chen, Q., Yachida, M.: Face detection from color images using a fuzzy pattern matching method. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 557–563 (1999)CrossRefGoogle Scholar
  12. 12.
    Terrillon, J., Shirazi, M., Fukamachi, H., Akamatsu, S.: Comparative performance of different skin chrominance models and chrominance space for the automatic detection of human faces in color images. In: Proc. The Fourth International Conference on Face and Gesture Recognition, Grenoble, France (2000)Google Scholar
  13. 13.
    Ohta, Y.: Knowledge-Based Interpretation of Outdoor Natural Color Scenes. Pitman Publishing, London (1985)Google Scholar
  14. 14.
    Smith, A.: Color gamut transform pairs. Computer Graphics 12, 12–19 (1978)CrossRefGoogle Scholar
  15. 15.
    Gonzalez, R., Woods, R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  16. 16.
    Judd, D., Wyszecki, G.: Color in Business, Science and Industry. John Wiley & Sons, Inc., Chichester (1975)Google Scholar
  17. 17.
    Chamberlin, G., Chamberlin, D.: Colour: Its Measurement, Computation and Application. Heyden & Son, London (1980)Google Scholar
  18. 18.
    Moon, H., Phillips, P.: Analysis of pca-based face recognition algorithms. In: Bowyer, K.W., Phillips, P.J. (eds.) Empirical Evaluation Techniques in Computer Vision, Wiley-IEEE Computer Society, Chichester (1998)Google Scholar
  19. 19.
    Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing 16, 295–306 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Peichung Shih
    • 1
  • Chengjun Liu
    • 1
  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations