A Decomposition Model for the Layered Evaluation of Interactive Adaptive Systems

  • Alexandros Paramythis
  • Stephan Weibelzahl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3538)


A promising approach towards evaluating adaptive systems is to decompose the adaptation process and evaluate the system in a “piece-wise” manner. This paper presents a decomposition model that integrates two previous proposals. The main “stages” identified are: (a) collection of input data, (b) interpretation of the collected data, (c) modeling of the current state of the “world”, (d) deciding upon adaptation, and (e) applying adaptation.


Adaptive System Decomposition Model Adaptation Decision Layered Evaluation Adaptive User Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Browne, D., Norman, M., Riches, D.: Why Build Adaptive Systems? In: Browne, D., Totterdell, P., Norman, M. (eds.) Adaptive User Interfaces, pp. 15–58. Academic Press, London (1990)Google Scholar
  2. 2.
    Chin, D.N.: Empirical evaluation of user models and user-adapted systems. User Modeling and User-Adapted Interaction 11(1-2), 181–194 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    de Bra, P., Houben, G.-J., Wu, H.: AHAM: A Dexter-based reference model for adaptive hypermedia. In: Tochtermann, K., Westbomke, J., Wiil, U.K., Leggett, J. (eds.) Proceedings of the ACM Conference on Hypertext and Hypermedia, Darmstadt, pp. 147–156 (1999)Google Scholar
  4. 4.
    Höök, K.: Steps to take before intelligent user interfaces become real. Interacting with Computers 12(4), 409–426 (2000)CrossRefGoogle Scholar
  5. 5.
    Koch, N., Wirsing, M.: The Munich Reference Model for adaptive hypermedia applications. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 213–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Oppermann, R.: Adaptively supported adaptability. International Journal of Human Computer Studies 40(3), 455–472 (1994)CrossRefGoogle Scholar
  7. 7.
    Paramythis, A., Totter, A., Stephanidis, C.: A Modular Approach to the Evaluation of Adaptive User Interfaces. In: Weibelzahl, S., Chin, D., Weber, G. (eds.) Empirical Evaluation of Adaptive Systems. Proceedings of workshop held at the Eighth International Conference on User Modeling in Sonthofen, Germany, July 13th, pp. 9–24. Freiburg, Pedagogical University of Freiburg (2001)Google Scholar
  8. 8.
    Totterdell, P., Rautenbach, P.: Adaptation as a Problem of Design. In: Browne, D., Totterdell, P., Norman, M. (eds.) Adaptive User Interfaces, pp. 61–84. Academic Press, London (1990)Google Scholar
  9. 9.
    Weibelzahl, S., Weber, G.: Evaluating the inference mechanism of adaptive learning systems. In: Brusilovsky, P., Corbett, A.T., de Rosis, F. (eds.) UM 2003. LNCS, vol. 2702. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexandros Paramythis
    • 1
  • Stephan Weibelzahl
    • 2
  1. 1.Institute for Information Processing and Microprocessor Technology (FIM)Johannes Kepler UniversityLinzAustria
  2. 2.School of InformaticsNational College of IrelandDublin 1Ireland

Personalised recommendations