Task-Oriented Web User Modeling for Recommendation

  • Xin Jin
  • Yanzan Zhou
  • Bamshad Mobasher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3538)


We propose an approach for modeling the navigational behavior of Web users based on task-level patterns. The discovered “tasks” are characterized probabilistically as latent variables, and represent the underlying interests or intended navigational goal of users. The ability to measure the probabilities by which pages in user sessions are associated with various tasks, allow us to track task transitions and modality shifts within (or across) user sessions, and to generate task-level navigational patterns. We also propose a maximum entropy recommendation system which combines the page-level statistics about users’ navigational activities together with our task-level usage patterns. Our experiments show that the task-level patterns provide better interpretability of Web users’ navigation, and improve the accuracy of recommendations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, A., Della Pietra, S., Della Pietra, V.: A maximum entropy approach to natural language processing. Computational Linguistics, 22(1) (1996)Google Scholar
  2. 2.
    Chen, S., Rosenfeld, R.: A guassian prior for smoothing maximum entropy models. Technical report, CMU (1999)Google Scholar
  3. 3.
    Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Journal of Knowledge and Information Systems 1(1) (1999)Google Scholar
  4. 4.
    Dai, H., Mobasher, B.: Using ontologies to discover domain-level web usage profiles. In: Proceedings of the 2nd Semantic Web Mining Workshop at ECML/PKDD 2002, Helsinki, Finland (August 2002)Google Scholar
  5. 5.
    Goodman, J.: Sequential conditional generalized iterative scaling. In: Proceedings of NAACL 2002 (2002)Google Scholar
  6. 6.
    Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Machine Learning Journal 42(1), 177–196 (2001)MATHCrossRefGoogle Scholar
  7. 7.
    Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, MA (1998)Google Scholar
  8. 8.
    Jeon, J., Manmatha, R.: Using maximum entropy for automatic image annotation. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 24–32. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Jin, X., Zhou, Y., Mobasher, B.: Web usage mining based on probabilistic latent semantic analysis. In: Proceedings of the Tenth ACM SIGKDD Conference 2004 (2004)Google Scholar
  10. 10.
    Kohavi, R., Mason, L., Parekh, R., Zheng, Z.: Lessons and challenges from mining retail e-commerce data. To appear in Machine Learning (2004)Google Scholar
  11. 11.
    Kushmerick, N., McKee, J., Toolan, F.: Towards zero-input personalization: Referrer-based page prediction. In: Brusilovsky, P., Stock, O., Strapparava, C. (eds.) AH 2000. LNCS, vol. 1892, pp. 133–143. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Mobasher, B., Cooley, R., Srivastava, J.: Creating adaptive web sites through usage-based clustering of urls. In: Proceedings of the 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX 1999), Chicago, Illinois (November 1999)Google Scholar
  13. 13.
    Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web usage mining. Communications of the ACM 43(8), 142–151 (2000)CrossRefGoogle Scholar
  14. 14.
    Mobasher, B., Dai, H., Nakagawa, M., Luo, T.: Discovery and evaluation of aggregate usage profiles for web personalization. Data Mining and Knowledge Discovery 6, 61–82 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Nigram, K., Lafferty, J., McCallum, A.: Using maximum entropy for text classification. In: Proceedings of IJCAI 1999 (1999)Google Scholar
  16. 16.
    Pavlov, D., Pennock, D.: A maximum entropy approach to collaborative filtering in dynamic, sparse, high-dimensional domains. In: Proceedings of Neural Information Processing Systems (2002)Google Scholar
  17. 17.
    Perkowitz, M., Etzioni, O.: Adaptive web sites: Automatically synthesizing web pages. In: Proceedings of the 15th National Conference on Artificial Intelligence, Madison, WI (July 1998)Google Scholar
  18. 18.
    Rosenfeld, R.: Adaptive statistical language modeling: A maximum entropy approach. Phd dissertation, CMU (1994)Google Scholar
  19. 19.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  20. 20.
    Sarukkai, R.R.: Link prediction and path analysis using markov chains. In: Proceedings of the 9th International World Wide Web Conference, Amsterdam (May 2000)Google Scholar
  21. 21.
    Spiliopoulou, M.: Web usage mining for web site evaluation. Communications of the ACM 43(8), 127–134 (2000)CrossRefGoogle Scholar
  22. 22.
    Srikant, R., Yang, Y.: Mining web logs to improve website organization. In: Proceedings of the 10th International World Wide Web Conference, Hong Kong (May 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xin Jin
    • 1
  • Yanzan Zhou
    • 1
  • Bamshad Mobasher
    • 1
  1. 1.Center for Web Intelligence, School of Computer Science, Telecommunication and Information SystemsDePaul UniversityChicagoUSA

Personalised recommendations