We present a novel expansion based decision procedure for quantified boolean formulas (QBF) in conjunctive normal form (CNF). The basic idea is to resolve existentially quantified variables and eliminate universal variables by expansion. This process is continued until the formula becomes propositional and can be solved by any SAT solver. On structured problems our implementation quantor is competitive with state-of-the-art QBF solvers based on DPLL. It is orders of magnitude faster on certain hard to solve instances.


Model Check Conjunctive Normal Form Boolean Formula Symbolic Model Check Hard Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayari, A., Basin, D.: QUBOS: deciding quantified boolean logic using propositional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT-solvers. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, p. 411. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, p. 193. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: Proc. 16th National Conference on Artificial Intelligence, (AAAI 1998) (1998)Google Scholar
  5. 5.
    Chatalic, P., Simon, L.: ZRes: The old Davis-Putnam procedure meets ZBDDs. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Chauhan, P., Clarke, E.M., Kröning, D.: Using SAT based image computation for reachability analysis. Technical Report CMU-CS-03-151, Carnegie Mellon University (2003)Google Scholar
  7. 7.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5 (1962)Google Scholar
  8. 8.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7 (1960)Google Scholar
  9. 9.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic satisfiability. In: Proc. 18th National Conference on Artificial Intelligence, AAAI 2002 (2002)Google Scholar
  10. 10.
    Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Information and Computation 117 (1995)Google Scholar
  11. 11.
    Le Berre, D., Simon, L., Tacchella, A.: Challenges in the QBF arena: the SAT 2003 evaluation of QBF solvers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 468–485. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, p. 160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    McMillan, K.L.: Symbolic Model Checking: An approach to the State Explosion Problem. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  14. 14.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Mneimneh, M., Sakallah, K.: Computing vertex eccentricity in exponentially large graphs: QBF formulation and solution. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 411–425. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Plaisted, D., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. Discrete Applied Mathematics 130(2) (2003)Google Scholar
  17. 17.
    Rintanen, J.: Partial implicit unfolding in the Davis-Putnam procedure for quantified boolean formulae. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, p. 362. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Savitch, W.J.: Relation between nondeterministic and deterministic tape complexity. Journal of Computer and System Sciences 4 (1970)Google Scholar
  19. 19.
    Sekar, R., Ramakrishnan, I.V., Voronkov, A.: Term indexing. In: Handbook of Automated Reasoning, vol. II. North-Holland, Amsterdam (2001)Google Scholar
  20. 20.
    Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: 5th Annual ACM Symposium on the Theory of Computing (1973)Google Scholar
  21. 21.
    Williams, P.F., Biere, A., Clarke, E.M., Gupta, A.: Combining decision diagrams and SAT procedures for efficient symbolic model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability solver. In: Proc. Intl. Conf. on Computer-Aided Design, ICCAD 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Armin Biere
    • 1
  1. 1.Institute for Formal Models and VerificationJohannes Kepler UniversityLinzAustria

Personalised recommendations