Advertisement

An Algebraic Approach to the Complexity of Generalized Conjunctive Queries

  • Michael Bauland
  • Philippe Chapdelaine
  • Nadia Creignou
  • Miki Hermann
  • Heribert Vollmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3542)

Abstract

Conjunctive-query containment is considered as a fundamental problem in database query evaluation and optimization. Kolaitis and Vardi pointed out that constraint satisfaction and conjunctive query containment are essentially the same problem. We study the Boolean conjunctive queries under a more detailed scope, where we investigate their counting problem by means of the algebraic approach through Galois theory, taking advantage of Post’s lattice. We prove a trichotomy theorem for the generalized conjunctive query counting problem, showing this way that, contrary to the corresponding decision problems, constraint satisfaction and conjunctive-query containment differ for other computational goals. We also study the audit problem for conjunctive queries asking whether there exists a frozen variable in a given query. This problem is important in databases supporting statistical queries. We derive a dichotomy theorem for this audit problem that sheds more light on audit applicability within database systems.

Keywords

Boolean Function Constraint Satisfaction Problem Algebraic Approach Conjunctive Normal Form Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundation of databases. Addison-Wesley, Reading (1995)Google Scholar
  2. 2.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News, Complexity Theory Column 42, 34(4), 38–52 (2003)Google Scholar
  3. 3.
    Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News, Complexity Theory Column 43, 35(1), 22–35 (2004)Google Scholar
  4. 4.
    Creignou, N., Hermann, M.: On #P-completeness of some counting problems. Research report 2144, Institut de Recherche en Informatique et en Automatique (December 1993), http://www.lix.polytechnique.fr/~hermann/publications/satcount.ps.gz
  5. 5.
    Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125(1), 1–12 (1996)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. In: SIAM Monographs on Discrete Mathematics and Applications, vol. 7, SIAM, Philadelphia (2001)Google Scholar
  7. 7.
    Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 323–332. Springer, Heidelberg (2000): (To appear in Theoretical Computer Science) Google Scholar
  8. 8.
    Hemaspaandra, L.A., Vollmer, H.: The satanic notations: Counting classes beyond #P and other definitional adventures. SIGACT News, Complexity Theory Column 8 26(1), 2–13 (1995)CrossRefGoogle Scholar
  9. 9.
    Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the Association for Computing Machinery 44(4), 527–548 (1997)MATHMathSciNetGoogle Scholar
  10. 10.
    Jonsson, P., Krokhin, A.: Computational complexity of auditing finite attributes in statistical databases. In: Proceedings Structural Theory of Automata, Semigroups and Universal Algebra, Montreal, Canada (July 2003)Google Scholar
  11. 11.
    Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing Boolean attributes. Journal of Computer and System Science 66(1), 244–253 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Köbler, J., Schöning, U., Torán, J.: On counting and approximation. Acta Informatica 26(4), 363–379 (1989)MATHMathSciNetGoogle Scholar
  13. 13.
    Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. Journal of Computer and System Science 61(2), 302–332 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Krokhin, A., Jonsson, P.: Recognizing frozen variables in constraint satisfaction problems. Technical Report TR03-062, Electronic Colloquium on Computational Complexity (2003)Google Scholar
  15. 15.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceeding 21st Symposium on Principles of Database Systems (PODS 2002). SIGACT-SIGMOD-SIGART, Madison (Wisconsin, USA), pp. 233–246. ACM Press, New York (2002)Google Scholar
  16. 16.
    Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)MATHGoogle Scholar
  17. 17.
    Pöschel, R.: Galois connection for operations and relations. Technical Report MATH-AL-8-2001, Technische Universität Dresden (2001)Google Scholar
  18. 18.
    Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften, Berlin (1979)Google Scholar
  19. 19.
    Post, E.L.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5, 1–122 (1941)MathSciNetGoogle Scholar
  20. 20.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings 10th Symposium on Theory of Computing (STOC 1978), San Diego (California, USA), pp. 216–226 (1978)Google Scholar
  21. 21.
    Silberstein, C., Brin, S., Motwani, R., Ullman, J.D.: Scalable techniques for mining causal structures. Data Mining and Knowledge Discovery 4(2-3), 163–192 (2000)CrossRefGoogle Scholar
  22. 22.
    Toda, S.: Computational complexity of counting complexity classes. PhD thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo, Japan (1991)Google Scholar
  23. 23.
    Toda, S., Watanabe, O.: Polynomial-time 1-Turing reductions from #PH to #P. Theoretical Computer Science 100(1), 205–221 (1992)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Widom, J.: Research problems in data warehousing. In: Proceedings 4th International Conference on Information and Knowledge Management (CIKM 1995), Baltimore (Maryland, USA), pp. 25–30. Association for Computing Machinery (1995)Google Scholar
  27. 27.
    Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3(1), 23–33 (1976)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.: View maintenance in a warehousing environment. In: Carey, M.J., Schneider, D.A. (eds.) Proceedings SIGMOD International Conference on Management of Data, San Jose (California, USA), pp. 316–327. ACM Press, New York (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Bauland
    • 1
  • Philippe Chapdelaine
    • 2
  • Nadia Creignou
    • 3
  • Miki Hermann
    • 4
  • Heribert Vollmer
    • 1
  1. 1.Theoretische InformatikUniversität HannoverGermany
  2. 2.GREYC (UMR 6072)Université de CaenFrance
  3. 3.LIF (UMR 6166)Univ. de la MéditerranéeFrance
  4. 4.LIX (UMR 7161)École PolytechniqueFrance

Personalised recommendations