Equivalence Models for Quantified Boolean Formulas

  • Hans Kleine Büning
  • Xishun Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3542)


In this paper, the notion of equivalence models for quantified Boolean formulas with free variables is introduced. The computational complexity of the equivalence model checking problem is investigated in the general case and in some restricted cases. We also establish a connection between the structure of some quantified Boolean formulas and the structure of models.


Quantified Boolean formula equivalence model model checking complexity equivalence satisfiability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas. Information Processing Letters 8, 121–123 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An Algorithm to Evaluate Quantified Boolean Formulas and its Evaluation. In: highlights of Satisfiability Research in the Year 2000. IOS Press, Amsterdam (2000)Google Scholar
  3. 3.
    Cook, S., Soltys, M.: Boolean Programs and Quantified Propositional Proof Systems. Bulletin of the Section of Logic 28, 119–129 (1999)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Flögel, A., Karpinski, M., Kleine Büning, H.: Resolution for Quantified Boolean Formulas. Information and Computation 117, 12–18 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman Company, San Francisco (1979)Google Scholar
  6. 6.
    Giunchiglia, E., Narizzano, M., Tacchella, A.: QuBE: A System for Deciding Quantified Boolean Formulas. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, p. 364. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  8. 8.
    Kleine Büning, H., Subramani, K., Zhao, X.: On Boolean Models for Quantified Boolean Horn Formulas. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 93–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Kleine Büning, H., Zhao, X.: On Models for Quantified Boolean Formulas. LNCS (2004) (to appear)Google Scholar
  10. 10.
    Letz, R.: Advances in Decision Procedure for Quantified Boolean Formulas. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Meyer, A.R., Stockmeyer, L.J.: Word Problems Requiring Exponential Time. In: Preliminary Report, Proc. 5th Ann. Symp. on Theory of Computing, pp. 1–9 (1973)Google Scholar
  12. 12.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York (1994)zbMATHGoogle Scholar
  13. 13.
    Rintanen, J.T.: Improvements to the Evaluation of Quantified Boolean Formulae. In: Proceedings of IJCAI (1999)Google Scholar
  14. 14.
    Schaefer, T.J.: The Complexity of Satisfiability Problem. In: Aho, A. (ed.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM Press, New York (1978)CrossRefGoogle Scholar
  15. 15.
    Stockmeyer, L.J.: The Polynomial-Time Hierarchy. Theoretical Computer Science 3, 1–22 (1977)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hans Kleine Büning
    • 1
  • Xishun Zhao
    • 2
  1. 1.Department of Computer ScienceUniversität PaderbornPaderbornGermany
  2. 2.Institute of Logic and CognitionSun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations