Model-Checking of Specifications Integrating Processes, Data and Time

  • Jochen Hoenicke
  • Patrick Maier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3582)


We present a new model-checking technique for CSP-OZ-DC, a combination of CSP, Object-Z and Duration Calculus, that allows reasoning about systems exhibiting communication, data and real-time aspects. As intermediate layer we will use a new kind of timed automata that preserve events and data variables of the specification. These automata have a simple operational semantics that is amenable to verification by a constraint-based abstraction-refinement model checker. By means of a case study, a simple elevator parameterised by the number of floors, we show that this approach admits model-checking parameterised and infinite state real-time systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Lamport, L.: An old-fashioned recipe for real time. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 1–27. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems. IEEE Trans. Software Engineering 22, 181–201 (1996)CrossRefGoogle Scholar
  3. 3.
    Ball, T., Rajamani, S.K.: The SLAM toolkit. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 260–264. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software components in C. In: ICSE 2003, pp. 385–395 (2003)Google Scholar
  5. 5.
    Delzanno, G., Podelski, A.: Model checking in CLP. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 223–239. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Dierks, H., Lettrari, M.: Constructing test automata from graphical real-time requirements. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 433–454. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dong, J.S., Hao, P., Qin, S.C., Sun, J., Yi, W.: Timed patterns: TCOZ to timed automata. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp. 483–498. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Fränzle, M.: Take it NP-easy: Bounded model construction for duration calculus. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 245–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL 2002, pp. 58–70. ACM Press, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  12. 12.
    Hoenicke, J., Maier, P.: Model-checking of specifications integrating processes, data and time. Technical Report 5, SFB/TR 14 AVACS (2005),
  13. 13.
    Hoenicke, J., Olderog, E.-R.: Combining specification techniques for processes data and time. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, p. 245. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Hoenicke, J., Olderog, E.-R.: CSP-OZ-DC: A combination of specification techniques for processes, data and time. Nordic Journal of Computing 9(4) (2002)Google Scholar
  15. 15.
    Lamport, L.: The temporal logic of actions. ACM TOPLAS 16, 872–973 (1994)CrossRefGoogle Scholar
  16. 16.
    Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termination. In: POPL 2005, pp. 132–144. ACM Press, New York (2005)CrossRefGoogle Scholar
  17. 17.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  18. 18.
    Rybalchenko, A.: A model checker based on abstraction refinement. Master’s thesis, Universität des Saarlandes, Saarbrücken, Saarland (September 2002)Google Scholar
  19. 19.
    Sharma, B., Pandya, P.K., Chakraborty, S.: Bounded validity checking of interval duration logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 301–316. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Skakkebæk, J.U.: Liveness and fairness in duration calculus. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 283–298. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  21. 21.
    Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers, Dordrecht (2000)MATHGoogle Scholar
  22. 22.
    Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  23. 23.
    Tapken, J.: Model-Checking of Duration Calculus Specifications. PhD thesis, University of Oldenburg (June 2001)Google Scholar
  24. 24.
    Yovine, S.: Kronos: A verification tool for real-time systems. International Journal of Software Tools for Technology Transfer 1(1+2) (1997)Google Scholar
  25. 25.
    Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer, Heidelberg (2004)MATHGoogle Scholar
  26. 26.
    Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing Letters 40(5), 269–276 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jochen Hoenicke
    • 1
  • Patrick Maier
    • 2
  1. 1.Department für InformatikUniversität OldenburgOldenburgGermany
  2. 2.Programming Logics GroupMPI für InformatikSaarbrückenGermany

Personalised recommendations