Advertisement

Multimedia Research Challenges for Industry

  • John R. Smith
  • Milind Naphade
  • Apostol (Paul) Natsev
  • Jelena Tesic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3568)

Abstract

The popularity of digital media (images, video, audio) is growing in all segments of the market including consumer, media enterprise, traditional enterprise and Web. Its tremendous growth is a result of the convergence of many factors, including the pervasive increase in bandwidth to users, general affordability of multimedia-ready devices throughout the digital media value chain (creation, management, and distribution), growing ease and affordability of creating digital media content, and growing expectation of the value of digital media in enhancing traditional unstructured and structured information. However, while digital media content is being created and distributed at far greater amounts than ever before, significant technical challenges remain for realizing its full business potential. This paper examines some of the research challenges for industry towards harnessing the full value of digital media.

Keywords

Multimedia Content Media Content Digital Media Semantic Concept Media Enterprise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, J.R., Lin, C.-Y., Naphade, M., Natsev, A., Tseng, B.L.: Statistical Techniques for Video Analysis and Searching. In: Rosenfeld, A., Doermann, D., DeMenthon, D. (eds.) Video Mining. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  2. Smith, J.R., Naphade, M., Natsev, A.: Multimedia Semantic Indexing using Model Vectors. In: Proc. IEEE Intl. Conf. on Multimedia and Expo (ICME), Baltimore, MD (July 2003)Google Scholar
  3. Jaimes, B., Tseng, L., Smith, J.R.: Modal Keywords, Ontologies, and Reasoning for Video Understanding. In: Int’l Conference on Image and Video Retrieval, Urbana, Illinois (July 2003)Google Scholar
  4. Naphade, M., Smith, J.R.: A Hybrid Framework for Detecting the Semantics of Concepts and Context. In: Conf. on Image and Video Retrieval, Urbana, IL, pp. 196–205 (June 2003)Google Scholar
  5. Naphade, M., Chang, E., Smith, J.R.: Multimedia Semantics and Machine Learning. In: IEEE Intl. Conf. on Multimedia and Expo (ICME), Baltimore, MD (July 2003)Google Scholar
  6. Naphade, M., Smith, J.R.: Learning Visual Models of Semantic Concepts. In: Proc. IEEE Intl. Conf. on Image Processing (ICIP), Barcelona, ES (September 2003)Google Scholar
  7. Amir, J.O., Argillander, M., Berg, S.-F., Chang, M., Franz, W., Hsu, G., Iyengar, J.R., Kender, L., Kennedy, C.-Y., Lin, M., Naphade, A., Natsev, J.R., Smith, J., Tesic, G., Wu, R., Yan, D.-Q.: IBM Research TRECVID-2004 Video Retrieval System. In: Proc. NIST Text Retrieval Conf (TREC), Gaithersburg, MD, Novemder (2004)Google Scholar
  8. Smith, J.R., Campbell, M., Naphade, M., Natsev, A., Tesic, J.: Learning and Classification of Semantic Concepts in Broadcast Video. In: 1st Int. Conf. on Intelligence Analysis, McLean, VA (May 2005)Google Scholar
  9. Fuchs, H., Farbar, N.: ISMA Interoperability and Conformance. IEEE MultiMedia, 96–102 (April-June 2005)Google Scholar
  10. Tesic, J.: Metadata Practices for Consumer Photos. IEEE Multimedia (July-September 2005) (to appear)Google Scholar
  11. Lyman, P., Varian, H.R.: How Much Information (2003), http://www.sims.berkeley.edu/how-much-info-2003
  12. Smith, J.R.: Marvel: Multimedia Analysis and Retrieval System (March 2005), http://www.research.ibm.com/marvel/Marvel%20Whitepaper.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John R. Smith
    • 1
  • Milind Naphade
    • 1
  • Apostol (Paul) Natsev
    • 1
  • Jelena Tesic
    • 1
  1. 1.Intelligent Information Management DepartmentIBM T. J. Watson Research CenterHawthorneUSA

Personalised recommendations