A Complete Keypics Experiment with Size Functions

  • Andrea Cerri
  • Massimo Ferri
  • Daniela Giorgi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3568)


Keypics are graphical metadata intended for indexing of images on the Internet. They are conceived as hand-drawn sketches, not restricted to a definite set. An obvious difficulty when dealing with keypics is that they elude rigid geometric treatment.

A proposal of solution comes from Size Functions. This paper is the report of a complete experiment on 494 keypics with Size Functions based on three measuring functions (distances, projections and jumps) and their combination.


Measuring Function Image Retrieval Size Function Fourier Descriptor Image Retrieval System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Carlsson, S.: Order structure, correspondence, and shape based categories. In: Forsyth, D.A., et al. (eds.) Shape, Contour, and Grouping 1999. LNCS, vol. 1681, pp. 58–71. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Cerri, A., Ferri, M., Giorgi, D.: A New Framework for Trademark Retrieval Based on Size Functions. In: To appear on: Proc. 2nd International Conference on Vision, Video and Graphics, Heriot Watt University, Edinburgh (July 7-8, 2005)Google Scholar
  4. 4.
    d’Amico, M.: A New Optimal Algorithm for Computing Size Functions of Shapes. In: CVPRIP Algorithms III, Proc. Intl. Conf. on Computer Vision, Pattern recognition and Image Processing, Atlantic City, pp. 107–110 (2000)Google Scholar
  5. 5.
    Donatini, P., Frosini, P., Landi, C.: Deformation energy for size functions. In: Hancock, E.R., Pelillo, M. (eds.) EMMCVPR 1999. LNCS, vol. 1654, pp. 44–53. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Ferri, M., Frosini, P.: Range size functions. In: Proc. SPIE Conf. on Vision Geometry III, Boston, November 2–3, pp. 243–251 (1994)Google Scholar
  7. 7.
    Ferri, M., Frosini, P.: A proposal for image indexing: “keypics”, plastic graphical metadata. In: Proc. IS&T/SPIE Symp. on Electronic Imaging, Internet Imaging VI, San Jose (January 16–20, 2005)Google Scholar
  8. 8.
    Frosini, P., Landi, C.: Size functions and formal series. Applicable Algebra in Engineering Communication and Computing 12, 327–349 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Granlund, G.H.: Fourier preprocessing for hand print character recognition. IEEE Trans. Computers C-21, 195–201 (1972)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH 2001, Computer Graphics Proc., Annual Conference Series, pp. 203–212 (2001)Google Scholar
  11. 11.
    Huijsmans, D.P., Sebe, N.: How to Complete Performance Graphs in Content-Based Image Retrieval: Add Generality and Normalize Scope. IEEE Trans. on PAMI 27, 245–251 (2005)Google Scholar
  12. 12.
    Iivarinen, J., Visa, A.: Shape recognition of irregular objects. In: Casasent, D.P. (ed.) Intelligent Robots and Computer Vision XV: Algorithms, Techniques, Active Vision, and Materials Handling, Proc. SPIE, vol. 2904, pp. 25–32 (1996)Google Scholar
  13. 13.
    Leung, M.-W., Chan, K.-L.: Object–based image retrieval using hierarchical shape descriptor. In: Lew, M.S., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 165–174. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Liu, W., Su, Z., Li, S., Zhang, H.J.: A Performance Evaluation Protocol for Content-Based Image Retrieval Algorithms/Systems. In: Proc. IEEE CVPR Workshop on Empirical Evaluation in Computer Vision, Kauai, USA (December 2001)Google Scholar
  15. 15.
    Müller, H., Müller, W., Squire, D.M., Marchand–Maillet, S., Pun, T.: Performance evaluation in content–based image retrieval: Overview and proposals. Pattern Rec. Letters 22, 593–601 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Petkovic, D., Jain, R.C.: Visual Information systems: lessons for its future. In: Proc. IS&T/SPIE Symp. on Electronic Imaging, Internet Imaging VI, San Jose (January 16–20, 2005)Google Scholar
  17. 17.
    Veltcamp, R.C., Hagedoorn, M.: State–of–the–art in shape matching. In: Lew, M. (ed.) Principles of Visual Information Retrieval, pp. 87–119. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrea Cerri
    • 1
  • Massimo Ferri
    • 1
  • Daniela Giorgi
    • 1
  1. 1.ARCES and Dept. of MathematicsUniversity of BolognaBolognaItaly

Personalised recommendations