Robust Methods and Representations for Soccer Player Tracking and Collision Resolution

  • Lluis Barceló
  • Xavier Binefa
  • John R. Kender
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3568)


We present a method of tracking multiple players in a soccer match using video taken from a single fixed camera with pan, tilt and zoom. We extract a single mosaic of the playing field and robustly derive its homography to a playing field model, based on color information, line extraction, and a Hausdorff distance measure. Players are identified by color and shape, and tracked in the image mosaic space using a Kalman filter. The frequent occlusions of multiple players are resolved using a novel representation acted on by a rule-based method, which recognizes differences between removable and intrinsic ambiguities. We test the methods with synthetic and real data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assfalg, J., Bertini, M., Colombo, C., del Bimbo, A., Nunziati, W.: Semantic annotation of soccer videos: automatic highlights identification. CVIU 92(2-3), 285–305 (2003)Google Scholar
  2. 2.
    Choi, S., Seo, Y., Kim, H., Hong, K.: Where are the ball and players? soccer game analysis with color-based tracking and image mosaik. In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1310. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Chui, C.K.: Kalman Filtering: With Real-Time Applications. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  4. 4.
    Cootes, T.F., Taylor, C.J.: Active shape models: Smart snakes. In: BMVC 1992, pp. 267–275 (1992)Google Scholar
  5. 5.
    Huttenlocher, D.P., Klenderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff distance. Technical report TR 91-1211, CU (1991)Google Scholar
  6. 6.
    Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 343–356. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Plataniotis, K.N., Venetsanopoulos, A.N.: Color image processing and applications. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Waltz, D.: Generating semantic descriptions from drawings of scenes with shadows. Technical Report 271, MIT Artificial Intelligence Laboratory (1972)Google Scholar
  9. 9.
    Welch, G., Bishop, G.: An introduction to the kalman filter. Technical Report TR 95-041, University of North Carolina (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lluis Barceló
    • 1
  • Xavier Binefa
    • 1
  • John R. Kender
    • 2
  1. 1.UPIIA and Departament d’Informàtica, BellaterraUniversitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Department of Computer ScienceColumbia UniversityNew YorkUSA

Personalised recommendations