Efficient Compressed Domain Target Image Search and Retrieval

  • Javier Bracamonte
  • Michael Ansorge
  • Fausto Pellandini
  • Pierre-André Farine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3568)


In this paper we introduce a low complexity and accurate technique for target image search and retrieval. This method, which operates directly in the compressed JPEG domain, addresses two of the CBIR challenges stated by The Benchathlon Network regarding the search of a specific image: finding out if an exact same image exists in a database, and identifying this occurrence even when the database image has been compressed with a different coding bit-rate. The proposed technique can be applied in feature-containing or featureless image collections, and thus it is also suitable to search for image copies that might exist on the Web for law enforcement of copyrighted material. The reported method exploits the fact that the phase of the Discrete Cosine Transform coefficients contains a significant amount of information of a transformed image. By processing only the phase part of these coefficients, a simple, fast, and accurate target image search and retrieval technique is achieved.


Image Retrieval Target Image Query Image Discrete Cosine Transform Coefficient Correlation Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, B.C., Rowe, L.A.: Compressed domain processing of JPEG-encoded images. Real-Time Imaging J. 2(1), 3–17 (1996)CrossRefGoogle Scholar
  2. 2.
    Mandal, M.K., Idris, F., Panchanathan, S.: A critical evaluation of image and video indexing techniques in the compressed domain. Image and Vision Computing Journal, Special issue on Content Based Image Indexing 17(7), 513–529 (1999)Google Scholar
  3. 3.
    Wong, P.H.W., Au, O.C.: A blind watermarking technique in JPEG compressed domain. In: Proc. IEEE Int’l Conf. on Image Processing (ICIP 2002), vol. 3, pp. 497–500 (September 2002)Google Scholar
  4. 4.
    The Benchathlon Network: CBIR Challenges –,
  5. 5.
    Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.: The Bayesian image retrieval system, PicHunter: Theory, implementation, and psychophysical experiments. IEEE Trans. on Image Processing 9(1), 20–37 (2000)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    Feng, G., Jiang, J.: JPEG image retrieval based on features from the DCT domain. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 120–128. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Smith, J.R., Chang, S.-F.: Transform features for texture classification and discrimination in large image databases. In: Proc. IEEE Int’l Conf. on Image Processing (ICIP 1994), vol. 3, pp. 407–411 (November 1994)Google Scholar
  10. 10.
    Lay, J.A., Guan, L.: image retrieval based on energy histograms of the low frequency DCT coefficients. In: Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing (ICASSP 1999), vol. 6, pp. 3009–3012 (March 1999)Google Scholar
  11. 11.
    Armstrong, A., Jiang, J.: An efficient image indexing algorithm in JPEG compressed domain. In: Proc. IEEE Int’l Conf. on Consumer Electronics (ICCE 2001), pp. 25–30 (June 2001)Google Scholar
  12. 12.
    Jiang, J., Armstrong, A., Feng, G.C.: Web-based image indexing and retrieval in JPEG compressed domain. Multimedia Systems 9, 424–432 (2004)CrossRefGoogle Scholar
  13. 13.
    Panchanathan, S.: Compressed or progressive image search. In: Castelli, V., Bergman, L. (eds.) Image Databases, Search and Retrieval of Digital Imagery. ch. 16. John Wiley & Sons, USA (2002)Google Scholar
  14. 14.
    del Bimbo, A.: Visual Information Retrieval. Morgan Kaufman Publ., USA (1999)Google Scholar
  15. 15.
    Manolopoulos, Y., Theodoridis, Y., Esotras, V.J.: Advanced database indexing. Kluwer Academia Publishers, USA (1999)Google Scholar
  16. 16.
    Johnson, N.F.: In: search of the right image: Recognition and tracking of images in image databases, collections, and the Internet, Technical Report, CSIS-TR-99-05-NFS, Center for Secure Information Systems, George Mason University, Fairfax, VA, USA (April 1999)Google Scholar
  17. 17.
    Guru, D.S., Punitha, P.: An invariant scheme for exact match retrieval of symbolic images based upon principal component analysis. Pattern Recognition Letters 25(1), 73–86 (2004)CrossRefGoogle Scholar
  18. 18.
    Chang, C.-C., Wu, T.-C.: An exact match retrieval scheme based upon principal component analysis. Pattern Recognition Letters 16(5), 465–470 (1995)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Bosch, P., van Ballegooij, A., de Vries, A., Kersten, M.: Exact matching in image databases. In: Proc. IEEE Int’l Conf. on Multimedia and Expo (ICME 2001), pp. 513–516 (August 2001)Google Scholar
  20. 20.
    Bracamonte, J.: The DCT-phase of images and its applications, Technical Report IMT No. 451 PE 01/04, Institute of Microtechnology, University of Neuchâtel, Switzerland (January 2004)Google Scholar
  21. 21.
    Bracamonte, J., Ansorge, M., Pellandini, F., Farine, P.-A.: Low complexity image matching in the compressed domain by using the DCT-phase. In: Proc. of the 6th COST 276 Workshop on Information and Knowledge Management for Integrated Media Communications, Thessaloniki, Greece, pp. 88–93 (May 2004)Google Scholar
  22. 22.
    Wang, J.: Downloads/Related Links –,
  23. 23.
    Pennebaker, W.B., Mitchel, J.L.: JPEG Still Image Data Compression Standard, Van Nostrand Reinhold, USA (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Javier Bracamonte
    • 1
  • Michael Ansorge
    • 1
  • Fausto Pellandini
    • 1
  • Pierre-André Farine
    • 1
  1. 1.Institute of MicrotechnologyUniversity of NeuchâtelNeuchâtelSwitzerland

Personalised recommendations