Advertisement

A New Method to Interrogate and Check UML Class Diagrams

  • Thomas Raimbault
  • David Genest
  • Stéphane Loiseau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3596)

Abstract

We present a new method for graphically interrogating and checking UML class diagrams. We employ the model of conceptual graphs (CGs) as representation, calculation and visualisation model. The key idea of our work is to translate UML class diagrams into the formalism of CGs. First, UML notations are encoded into UML Ontology that is a support of CG. Second, using the UML Ontology, a UML class diagram can be translated into a CG, called CG class diagram. Third, CG class diagrams can be interrogated via the elementary operation of CG, named projection. Fourth, constraints and rules provides a way to model specifications for checking CG class diagrams. We use two approaches to check a class diagram: object-oriented specifications and field specifications.

Keywords

Class Diagram Positive Constraint Conceptual Graph Concept Node Concept Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BGM99a]
    Baget, J.F., Genest, D., Mugnier, M.L.: Knowledge acquisition with a pure graph-based knowledge representation model. In: Proc. of KAW 1999, vol. 2, pp. 7.1.1–7.1.20 (1999)Google Scholar
  2. [BGM99b]
    Baget, J.F., Genest, D., Mugnier, M.L.: A pure graph-based solution to the SCG-1 initiative. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS (LNAI), vol. 1640, pp. 355–376. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. [BJR98]
    Booch, G., Jacobson, C., Rumbaugh, J.: The Unified Modeling Language - a reference manual. Addison Wesley, Reading (1998)Google Scholar
  4. [BM02]
    Baget, J.F., Mugnier, M.L.: Extensions of Simple Conceptual Graphs: the Complexity of Rules and Constraints. JAIR 16(12), 425–465 (2002)zbMATHMathSciNetGoogle Scholar
  5. [Bor04]
    Borland. Together software (2004), http://www.borland.com/together/
  6. [CM92]
    Chein, M., Mugnier, M.L.: Conceptual Graphs: Fundamental Notions. Revue d’intelligence artificielle 6(4), 365–406 (1992)Google Scholar
  7. [CM97]
    Chein, M., Mugnier, M.L.: Positive nested conceptual graphs. In: ICCS 1997 [ICC97], pp. 95–109Google Scholar
  8. [CM04]
    Chein, M., Mugnier, M.L.: Concept types and coreference in simple conceptual graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 303–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. [CMS98]
    Chein, M., Mugnier, M.L., Simonet, G.: Nested graphs: A graph-based knowledge representation model with FOL semantics. In: Proc. of KR 1998, pp. 524–534. Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  10. [Gen04a]
    Genest, D.: CoGITaNT 5.1.5 (2004), http://cogitant.sourceforge.net
  11. [Gen04b]
    Gentleware. Poseidon SE (2004), http://www.gentleware.com/
  12. [Hae95]
    Haemmerlé, O.: La plate-forme CoGITo: manuel d’utilisation. Technical Report 95012, LIRMM (1995)Google Scholar
  13. [IBM04]
    IBM. Rational rose (2004), http://www-306.ibm.com/software/rational/
  14. [ICC97]
    Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.): ICCS 1997. LNCS, vol. 1257. Springer, Heidelberg (1997)Google Scholar
  15. [KS97]
    Kerdiles, G., Salvat, É.: A sound and complete CG proof procedure combining projection with analytic tableaux. In: ICCS 1997 [ICC97], pp. 371–385Google Scholar
  16. [MC96]
    Mugnier, M.L., Chein, M.: Représenter des connaissances et raisonner avec des graphes. Revue d’intelligence artificielle 10(1), 7–56 (1996)zbMATHGoogle Scholar
  17. [OMG02]
    OMG. XML Metadata Interchange (XMI) Specification (2002), http://www.omg.org/technology/documents/formal/xmi.htm
  18. [Sal98]
    Salvat, É.: Theorem proving using graph operations in the conceptual graph formalism. In: Proc. of ECAI 1998 (1998)Google Scholar
  19. [Sow84]
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  20. [Wer95]
    Wermelinger, M.: Conceptual graphs and first-order logic. In: Malyshkin, V.E. (ed.) PaCT 1995. LNCS (LNAI), vol. 964, pp. 323–337. Springer, Heidelberg (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Raimbault
    • 1
  • David Genest
    • 1
  • Stéphane Loiseau
    • 1
  1. 1.Laboratoire d’Etude et de Recherche d’Angers (LERIA)Université d’AngersANGERS Cedex 01France

Personalised recommendations