Morphisms in Context

  • Markus Krötzsch
  • Pascal Hitzler
  • Guo-Qiang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3596)


Morphisms constitute a general tool for modelling complex relationships between mathematical objects in a disciplined fashion. In Formal Concept Analysis (FCA), morphisms can be used for the study of structural properties of knowledge represented in formal contexts, with applications to data transformation and merging. In this paper we present a comprehensive treatment of some of the most important morphisms in FCA and their relationships, including dual bonds, scale measures, infomorphisms, and their respective relations to Galois connections. We summarize our results in a concept lattice that cumulates the relationships among the considered morphisms. The purpose of this work is to lay a foundation for applications of FCA in ontology research and similar areas, where morphisms help formalize the interplay among distributed knowledge bases.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  2. 2.
    Lawvere, F.W., Rosebrugh, R.: Sets for mathematics. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and programming. Journal of the ACM 39 (1992)Google Scholar
  4. 4.
    Barwise, J., Seligman, J.: Information flow: the logic of distributed systems. Cambridge tracts in theoretical computer science, vol. 44. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  5. 5.
    Kent, R.E.: The information flow foundation for conceptual knowledge organization. In: Proc. of the 6th Int. Conf. of the International Society for Knowledge Organization (2000)Google Scholar
  6. 6.
    Kent, R.E.: Semantic integration in the Information Flow Framework. In: Kalfoglou, Y., et al. (eds.) Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings 04391 (2005)Google Scholar
  7. 7.
    Pratt, V.: Chu spaces as a semantic bridge between linear logic and mathematics. Theoretical Computer Science 294, 439–471 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Krötzsch, M., Hitzler, P., Zhang, G.Q.: Morphisms in context. Technical report, AIFB, Universität Karlsruhe (2005),
  9. 9.
    Erné, M.: Categories of contexts. Unpublished (2005); Rewritten versionGoogle Scholar
  10. 10.
    Xia, W.: Morphismen als formale Begriffe, Darstellung und Erzeugung. PhD thesis, TH Darmstadt (1993)Google Scholar
  11. 11.
    Ganter, B.: Relational Galois connections. Unpublished manuscript (2004)Google Scholar
  12. 12.
    Kent, R.E.: Distributed conceptual structures. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 104–123. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Hitzler, P., Krötzsch, M., Zhang, G.Q.: A categorical view on algebraic lattices in formal concept analysis. Technical report, AIFB, Universität Karlsruhe (2004)Google Scholar
  14. 14.
    Krötzsch, M.: Morphisms in logic, topology, and formal concept analysis. Master’s thesis, Dresden University of Technology (2005)Google Scholar
  15. 15.
    Goguen, J.: Three perspectives on information integration. In: Kalfoglou, Y., et al. (eds.) Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings 04391 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Markus Krötzsch
    • 1
  • Pascal Hitzler
    • 1
  • Guo-Qiang Zhang
    • 2
  1. 1.AIFBUniversität KarlsruheGermany
  2. 2.Department of Electrical Engineering and Computer ScienceCase Western Reserve UniversityClevelandU.S.A

Personalised recommendations