Advertisement

Orthogonal Extensions in Structural Operational Semantics

(Extended Abstract)
  • MohammadReza Mousavi
  • Michel A. Reniers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

In this paper, we give novel and more liberal notions of operational and equational conservativity for language extensions. We motivate these notions by showing their practical application in existing formalisms. Based on our notions, we formulate and prove meta-theorems that establish conservative extensions for languages defined using Structural Operational Semantics (SOS).

Keywords

Formal Semantics Structural Operational Semantics (SOS) Conservative Extension Operational Conservativity Equational Conservativity Orthogonality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Handbook of Process Algebra, ch. 3, pp. 197–292. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  2. 2.
    Baeten, J.C.M.: Embedding untimed into timed timed process algebra: the case for explicit termination. MSCS 13(4), 589–618 (2003)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Baeten, J.C.M., Verhoef, C.: Concrete Process Algebra. In: Handbook of Logic in Computer Science, vol. 4, pp. 149–268. Oxford University Press, Oxford (1995)Google Scholar
  4. 4.
    Bol, R., Groote, J.F.: The meaning of negative premises in transition system specifications. JACM 43(5), 863–914 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fokkink, W.J., Verhoef, C.: A conservative look at operational semantics with variable binding. I&C 146(1), 24–54 (1998)zbMATHMathSciNetGoogle Scholar
  6. 6.
    van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II. JLAP 60-61, 229–258 (2004)Google Scholar
  7. 7.
    van Glabbeek, R.J.: The linear time - branching time spectrum I. In: Handbook of Process Algebra, ch. 1, pp. 3–100. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  8. 8.
    Groote, J.F.: Transition system specifications with negative premises. TCS 118(2), 263–299 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Leduc, G., Leonard, L.: A timed LOTOS supporting a dense time domain and including new timed operators. In: Proceedings of FORTE 1992, pp. 87–102. North-Holland, Amsterdam (1993)Google Scholar
  10. 10.
    Middelburg, C.A.: An alternative formulation of operational conservativity with binding terms. JLAP 55(1/2), 1–19 (2003)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Mousavi, M.R., Reniers, M.A.: Orthogonal Extensions in Structural Operational Semantics. Technical Report, Dept. of Computer Science, Eindhoven Univ. of Tech. (2005)Google Scholar
  12. 12.
    Park, D.M.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  13. 13.
    Plotkin, G.D.: A structural approach to operational semantics. JLAP 60, 17–139 (2004)MathSciNetGoogle Scholar
  14. 14.
    Vereijken, J.J.: Discrete Time Process Algebra. PhD thesis, Department of Computer Science, Eindhoven University of Technology (1997)Google Scholar
  15. 15.
    Verhoef, C.: A general conservative extension theorem in process algebra. In: Proceedings of PROCOMET 1994, pp. 274–302. Elsevier, Amsterdam (1994)Google Scholar
  16. 16.
    Verhoef, C.: A congruence theorem for structured operational semantics with predicates and negative premises. Nordic Journal of Computing 2(2), 274–302 (1995)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Verhoef, C., Aceto, L., Fokkink, W.: Conservative extension in structural operational semantics. BEATCS 69, 110–132 (1999)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • MohammadReza Mousavi
    • 1
  • Michel A. Reniers
    • 1
  1. 1.Department of Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations