Advertisement

Lower Bounds for Lovász-Schrijver Systems and Beyond Follow from Multiparty Communication Complexity

  • Paul Beame
  • Toniann Pitassi
  • Nathan Segerlind
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

We prove that an ω(log3 n) lower bound for the three-party number-on-the-forehead (NOF) communication complexity of the set-disjointness function implies an n ω(1) size lower bound for tree-like Lovász-Schrijver systems that refute unsatisfiable CNFs. More generally, we prove that an n Ω(1) lower bound for the (k+1)-party NOF communication complexity of set-disjointness implies a \(2^{n^{\Omega(1)}}\) size lower bound for all tree-like proof systems whose formulas are degree k polynomial inequalities.

Keywords

Communication Complexity Proof System Charge Vector Discrete Apply Mathematic Polynomial Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Bollobás, B., Lovász, L.: Proving integrality gaps without knowing the linear program. In: Proceedings 43nd Annual Symposium on Foundations of Computer Science, Vancouver, BC, November 2002, pp. 313–322. IEEE, Los Alamitos (2002)Google Scholar
  2. 2.
    Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity theory. In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Ontario, October 1986, pp. 337–347. IEEE, Los Alamitos (1986)Google Scholar
  3. 3.
    Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A direct sum theorem for corruption and the multiparty NOF communication complexity of set disjointness. In: Proceedings Twentieth Annual IEEE Conference on Computational Complexity, San Jose, CA (June 2005)Google Scholar
  4. 4.
    Bockmayr, A., Eisenbrand, F., Hartmann, M.E., Schulz, A.S.: On the Chvatal rank of polytopes in the 0/1 cube. Discrete Applied Mathematics 98(1-2), 21–27 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds and integrality gaps for cutting planes procedures. In: Proceedings 44th Annual Symposium on Foundations of Computer Science, Boston, MA, October 2003, pp. 318–327. IEEE, Los Alamitos (2003)Google Scholar
  6. 6.
    Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics 4, 305–337 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chvátal, V., Cook, W., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra and its Applications 114/115, 455–499 (1989)CrossRefGoogle Scholar
  8. 8.
    Cook, W., Coullard, C.R., Turan, G.: On the complexity of cutting plane proofs. Discrete Applied Mathematics 18, 25–38 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dash, S.: On the matrix cuts of Lovász and Schrijver and their use in Integer Programming. PhD thesis, Department of Computer Science, Rice University (March 2001)Google Scholar
  10. 10.
    Dash, S.: An exponential lower bound on the length of some classes of branch-and-cut proofs. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 145–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Eisenbrand, F., Schulz, A.S.: Bounds on the Chvatal rank of polytopes in the 0/1-cube. Combinatorica 23(2), 245–261 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 419–430. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Impagliazzo, R., Pitassi, T., Urquhart, A.: Upper and lower bounds on tree-like cutting planes proofs. In: 9th Annual IEEE Symposium on Logic in Computer Science, Paris, France, pp. 220–228 (1994)Google Scholar
  14. 14.
    Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity of set intersection. In: Proceedings, Structure in Complexity Theory, Second Annual Conference, Cornell University, Ithaca, NY, June 1987, pp. 41–49. IEEE, Los Alamitos (1987)Google Scholar
  15. 15.
    Khachian, L.G.: A polynomial time algorithm for linear programming. Doklady Akademii Nauk SSSR, n.s. 244(5), 1093–1096 (1979); English translation in Soviet Math. Dokl. 20, 191–194 (1979)Google Scholar
  16. 16.
    Lovasz, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optimization 1(2), 166–190 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nisan, N.: The communication complexity of threshold gates. In: Mikl’os, V.S.D., Szonyi, T. (eds.) Combinatorics: Paul Erdös is Eighty, vol. I, pp. 301–315. Bolyai Society (1993)Google Scholar
  19. 19.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. Journal of Symbolic Logic 62(3), 981–998 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. Journal of the ACM 39(3), 736–744 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Valiant, L., Vazirani, V.: NP is as easy as detecting unique solutions. Theoretical Computer Science, 85–93 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Paul Beame
    • 1
  • Toniann Pitassi
    • 2
  • Nathan Segerlind
    • 1
  1. 1.Computer Science and EngineeringUniversity of WashingtonSeattle
  2. 2.Computer Science DepartmentUniversity of TorontoToronto

Personalised recommendations