Noisy Turing Machines

  • Eugene Asarin
  • Pieter Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

Turing machines exposed to a small stochastic noise are considered. An exact characterisation of their (≈\({\it \Pi}\)\(_{\rm 2}^{\rm 0}\)) computational power (as noise level tends to 0) is obtained. From a probabilistic standpoint this is a theory of large deviations for Turing machines.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McKee, W., Bergman, D., Nguyen, N., Aton, T., Block, L., Huynh, V., McAdams, H., Smith, E., McPherson, J., Janzen, J., Ondrusek, J., Hyslop, A., Russell, D., Coy, R.: Cosmic ray neutron induced upsets as a major contributor to the soft error rate of current and future generation DRAMs. In: Proceedings of the International Reliability Physics Symposium (1996)Google Scholar
  2. 2.
    Howard, J.J., Hardage, D.: Spacecraft environments interactions: Space radiation and its effects on electronic systems. Technical Report TP-1999-209373, NASA (1999), http://trs.nis.nasa.gov/archive/00000502/01/tp209373.pdf
  3. 3.
    Puri, A.: Dynamical properties of timed automata. Discrete Event Dynamic Systems 10, 87–113 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fränzle, M.: Analysis of hybrid systems: An ounce of realism can save an infinity of states. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Asarin, E., Bouajjani, A.: Perturbed Turing machines and hybrid systems. In: Proceedings of the 16th Annual IEEE Symposium on Logic in Computer Science, p. 269. IEEE Computer Society, Los Alamitos (2001)CrossRefGoogle Scholar
  6. 6.
    Delyon, B., Maler, O.: On the effects of noise and speed on computations. Theoretical Computer Science 129, 279–291 (1994)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Maass, W., Orponen, P.: On the effect of analog noise in discrete-time analog computations. Neural Computation 10, 1071–1095 (1998)CrossRefGoogle Scholar
  8. 8.
    Freidlin, M., Wentzell, A.: Random perturbations of dynamical systems. Springer, New York (1984)MATHGoogle Scholar
  9. 9.
    Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)MATHGoogle Scholar
  10. 10.
    Weihrauch, K.: Computable analysis. Springer, Berlin (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Eugene Asarin
    • 1
  • Pieter Collins
    • 2
  1. 1.LIAFAUniversité Paris 7 / CNRSParis Cedex 05France
  2. 2.Centrum voor Wiskunde in InformaticaAmsterdamThe Netherlands

Personalised recommendations