Advertisement

An Accessible Approach to Behavioural Pseudometrics

With an Application to Probabilistic Systems
  • Franck van Breugel
  • Claudio Hermida
  • Michael Makkai
  • James Worrell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

Behavioural pseudometrics are a quantitative analogue of behavioural equivalences. They provide robust models for those concurrent systems in which quantitative data plays a crucial role. In this paper, we show how behavioural pseudometrics can be defined coalgebraically. Our results rely on the theory of accessible categories. We apply our results to obtain a robust model for probabilistic systems.

Keywords

Distance Function Nonexpansive Function Complete Lattice Concurrent System Accessible Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge University Press, Cambridge (1994)zbMATHCrossRefGoogle Scholar
  2. 2.
    Arbib, M.A., Manes, E.G.: Arrows, Structures, and Functors: the categorical imperative. Academic Press, London (1975)zbMATHGoogle Scholar
  3. 3.
    de Bakker, J.W., de Vink, E.P.: Control Flow Semantics. The MIT Press, Cambridge (1996)zbMATHGoogle Scholar
  4. 4.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theoretical Computer Science 114(2), 299–315 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Billingsley, P.: Probability and Measure. John Wiley & Sons, Chichester (1995)zbMATHGoogle Scholar
  6. 6.
    van Breugel, F., Worrell, J.: Towards quantitative verification of probabilistic transition systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 421–432. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    van Breugel, F., Worrell, J.: A behavioural pseudometric for metric labelled transition systems (2005)Google Scholar
  8. 8.
    van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition systems. Theoretical Computer Science 331(1), 115–142 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    de Alfaro, L.: Quantitative verification and control via the mu-calculus. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 102–126. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching metrics for quantitative transition systems. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 97–109. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in systems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quantitative transition systems. In: Proceedings of QAPL. ENTCS. Elsevier, Amsterdam (2005)Google Scholar
  13. 13.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labeled Markov systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 258–273. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: The metric analogue of weak bisimulation for probabilistic processes. In: Proceedings of LICS, pp. 413–422. IEEE, Los Alamitos (2002)Google Scholar
  15. 15.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theoretical Computer Science 318(3), 323–354 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Edgar, G.A.: Integral, Probability, and Fractal Measures. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  17. 17.
    Engelking, R.: General Topology. Heldermann Verlag (1989)Google Scholar
  18. 18.
    Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of PROCOMET, pp. 443–458. North-Holland, Amsterdam (1990)Google Scholar
  19. 19.
    Gupta, V., Jagadeesan, R., Panangaden, P.: Approximate reasoning for real-time probabilistic processes. In: Proceedings of QEST, pp. 304–313. IEEE, Los Alamitos (2004)Google Scholar
  20. 20.
    Heckmann, R.: Probabilistic domains. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 142–156. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  21. 21.
    Jacobs, B., Rutten, J.J.M.M.: A tutorial on (co)algebras and (co)induction. Bulletin of the EATCS 62, 222–259 (1997)zbMATHGoogle Scholar
  22. 22.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971)zbMATHGoogle Scholar
  24. 24.
    Makkai, M., Paré, R.: Accessible Categories: The Foundation of Categorical Model Theory. American Mathematical Society, Providence (1989)Google Scholar
  25. 25.
    Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, London (1967)zbMATHGoogle Scholar
  26. 26.
    Turi, D., Rutten, J.J.M.M.: On the foundations of final coalgebra semantics: non-well-founded sets, partial orders, metric spaces. Mathematical Structures in Computer Science 8(5), 481–540 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoretical Computer Science 221(1/2), 271–293 (1999)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Franck van Breugel
    • 1
  • Claudio Hermida
    • 2
  • Michael Makkai
    • 3
  • James Worrell
    • 4
  1. 1.Department of Computer ScienceYork UniversityTorontoCanada
  2. 2.Department of MathematicsInstituto Superior TécnicoLisbonPortugal
  3. 3.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  4. 4.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations