Polynomial Time Preemptive Sum-Multicoloring on Paths

  • Annamária Kovács
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

The preemptive Sum-Multicoloring (pSMC) problem is a scheduling problem where pairwise conflicting jobs are represented by a conflict graph. The time demands of jobs are given by integer weights on the nodes. The goal is to schedule the jobs in such a way that the sum of their finish times is minimized. We give an \({\mathcal O}(n \cdot {\rm min}(n,{\rm log}\ p))\) time algorithm for pSMC on paths and cycles, where n is the number of nodes and p is the largest time demand. This is the first polynomial algorithm for this problem. It answers the question raised in [8] about the hardness of this problem. In this respect our result identifies a gap between binary-tree conflict graphs – where the question is NP-hard – and paths. Furthermore, our time bound gets very close to that of \({\mathcal O}(n\cdot {\rm log} \ p/{\rm log log} \ p)\) for the non-preemptive SMC on paths [8] . A detailed version of this paper is available at [3].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Noy, A., Kortsarz, G.: The minimum color-sum of bipartite graphs. Journal of Algorithms 28, 339–365 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Halldórsson, M.M., Kortsarz, G.: Tools for multicoloring with applications to planar graphs and partial k-trees. Journal of Algorithms 42(2), 334–366 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Kovács, A.: Fast preemtive sum-multicoloring on paths. Extended version, http://www.mpi-sb.mpg.de/~panni/pSMC_long.ps
  4. 4.
    Kovács, A.: Sum-multicoloring on paths. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 68–80. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Kubicka, E.: The Chromatic Sum of a Graph. PhD thesis, Western Michigan University (1989)Google Scholar
  6. 6.
    Marx, D.: The complexity of tree multicolorings. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, p. 532. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Bar-Noy, A., Halldórsson, M.M., Kortsarz, G., Shachnai, H., Salman, R.: Sum multicoloring of graphs. Journal of Algorithms 37, 422–450 (2000)MATHCrossRefGoogle Scholar
  8. 8.
    Halldórsson, M.M., Kortsarz, G., Proskurowski, A., Salman, R., Shachnai, H., Telle, J.A.: Multi-coloring trees. Information and Computation 180(2), 113–129 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Annamária Kovács
    • 1
  1. 1.Max-Planck Institut für InformatikSaarbrückenGermany

Personalised recommendations