Up-to Techniques for Weak Bisimulation

  • Damien Pous
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

Up-to techniques have been introduced to enhance the bisimulation proof method for establishing bisimilarity results. While up-to techniques for strong bisimilarity are well understood, in the weak case they come as a collection of unrelated results, and lack a unified presentation. We propose a uniform and modular theory of up-to techniques for weak bisimulation that captures existing proof technology and introduces new techniques. Some proofs rely on non trivial – and new – commutation results based on termination guarantees.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arun-Kumar, S., Hennessy, M.: An efficiency preorder for processes. Acta Informatica 29(9), 737–760 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bezem, M., Klop, J.W., van Oostrom, V.: Diagram techniques for confluence. Information and Computation 141(2), 172–204 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fournet, C.: The Join-Calculus: a Calculus for Distributed Mobile Programming. PhD thesis, Ecole Polytechnique (1998)Google Scholar
  4. 4.
    Hirschkoff, D., Pous, D., Sangiorgi, D.: An Efficient Abstract Machine for Safe Ambients. Technical Report 2004–63, LIP – ENS Lyon, 2004. An extended abstract appeared in the proceedings of COORDINATION 2005 (2005)Google Scholar
  5. 5.
    Pous, D.: Up-to Techniques for Weak Bisimulation. Technical Report 2005–16, LIP – ENS Lyon (2005)Google Scholar
  6. 6.
    Pous, D.: Web appendix of this paper (2005), Available at http://perso.ens-lyon.fr/damien.pous/upto
  7. 7.
    INRIA projet Logical. The Coq proof assistant, http://coq.inria.fr/
  8. 8.
    Sangiorgi, D.: On the Bisimulation Proof Method. Mathematical Structures in Computer Science 8, 447–479 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sangiorgi, D., Milner, R.: The problem of “Weak Bisimulation up to”. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 32–46. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  10. 10.
    TeReSe. Term Rewriting Systems, Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Damien Pous
    • 1
  1. 1.ENS Lyon 

Personalised recommendations