Computationally Sound Implementations of Equational Theories Against Passive Adversaries

  • Mathieu Baudet
  • Véronique Cortier
  • Steve Kremer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

In this paper we study the link between formal and cryptographic models for security protocols in the presence of a passive adversary. In contrast to other works, we do not consider a fixed set of primitives but aim at results for an arbitrary equational theory. We define a framework for comparing a cryptographic implementation and its idealization w.r.t. various security notions. In particular, we concentrate on the computational soundness of static equivalence, a standard tool in cryptographic pi calculi. We present a soundness criterion, which for many theories is not only sufficient but also necessary. Finally, we establish new soundness results for the exclusive OR and a theory of ciphers and lists.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 46–58. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Abadi, M., Fournet, C.: Mobile values, new names, and secure communications. In: Proc. 28th Annual ACM Symposium on Principles of Programming Languages (POPL 2001), pp. 104–115 (2001)Google Scholar
  3. 3.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). In: Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 3–22. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style cryptographic library. In: Proc. 17th IEEE Computer Science Foundations Workshop (CSFW 2004), pp. 204–218 (2004)Google Scholar
  5. 5.
    Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: Proc. 10th ACM Conference on Computer and Communications Security, CCS 2003 (2003)Google Scholar
  6. 6.
    Bana, G.: Soundness and Completeness of Formal Logics of Symmetric Encryption. PhD thesis, University of Pennsylvania (2004)Google Scholar
  7. 7.
    Baudet, M., Cortier, V., Kremer, S.: Computationally sound implementations of equational theories against passive adversaries. Research Report 2005/074, Cryptology ePrint Archive, 28 pages (March 2005)Google Scholar
  8. 8.
    Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: Proc. 25th IEEE Symposium on Security and Privacy (SSP 2004), pp. 86–100 (2004)Google Scholar
  9. 9.
    Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Information Theory IT-29(12), 198–208 (1983)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Sciences 28, 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Laud, P.: Symmetric encryption in automatic analyses for confidentiality against active adversaries. In: Proc. IEEE Symposium on Security and Privacy (SSP 2004), pp. 71–85 (2004)Google Scholar
  12. 12.
    Micciancio, D., Warinschi, B.: Completeness theorems for the Abadi-Rogaway logic of encrypted expressions. Journal of Computer Security 12(1), 99–129 (2004)Google Scholar
  13. 13.
    Phan, D.H., Pointcheval, D.: About the security of ciphers (semantic security and pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 185–200. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Rivest, R.L.: On the notion of pseudo-free groups. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 505–521. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mathieu Baudet
    • 1
  • Véronique Cortier
    • 2
  • Steve Kremer
    • 1
  1. 1.LSVCNRS UMR 8643 & INRIA Futurs projet SECSI & ENS CachanFrance
  2. 2.LoriaCNRS UMR 7503 & INRIA Lorraine projet CassisFrance

Personalised recommendations