Advertisement

All Quantum Adversary Methods Are Equivalent

  • Robert Špalek
  • Mario Szegedy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3580)

Abstract

The quantum adversary method is one of the most versatile lower-bound methods for quantum algorithms. We show that all known variants of this method are equal: spectral adversary [1], weighted adversary [2], strong weighted adversary [3], and the Kolmogorov complexity adversary [4]. We also present a few new equivalent formulations of the method. This shows that there is essentially one quantum adversary method. From our approach, all known limitations of all versions of the quantum adversary method easily follow.

Keywords

Weight Scheme Query Complexity Kolmogorov Complexity Polynomial Method Boolean Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnum, H., Saks, M., Szegedy, M.: Quantum decision trees and semidefinite programming. In: Proc. of the 18th IEEE Conference on Computational Complexity, pp. 179–193 (2003)Google Scholar
  2. 2.
    Ambainis, A.: Polynomial degree vs. quantum query complexity. In: Proc. of the 44th IEEE Symp. on Foundations of Computer Science, pp. 230–239 (2003)Google Scholar
  3. 3.
    Zhang, S.: On the power of ambainis’s lower bounds. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1238–1250. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Laplante, S., Magniez, F.: Lower bounds for randomized and quantum query complexity using Kolmogorov arguments. In: Proceedings of 19th IEEE Conference on Computational Complexity, pp. 294–304 (2004); 294–304 quant-ph/0311189Google Scholar
  5. 5.
    Bennett, H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM Journal on Computing 26, 1510–1523 (1997); quant-ph/9701001zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. Journal of the ACM 48, 778–797 (2001); Earlier version in FOCS 1998 (1998) quant-ph/9802049. zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ambainis, A.: Quantum lower bounds by quantum arguments. Journal of Computer and System Sciences 64, 750–767 (2002); Earlier version in STOC 2000 (2000) quant-ph/0002066. zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th ACM STOC, pp. 212–219 (1996); quant-ph/9605043Google Scholar
  9. 9.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003); quant-ph/0304052CrossRefGoogle Scholar
  10. 10.
    Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica 34, 429–448 (2002); Special issue on Quantum Computation and Cryptography. quant-ph/0102078CrossRefMathSciNetGoogle Scholar
  11. 11.
    Szegedy, M.: On the quantum query complexity of detecting triangles in graphs (2003); quant-ph/0310107Google Scholar
  12. 12.
    Aaronson, S., Shi, Y.: Quantum lower bounds for the collision problem. Journal of the ACM 51, 595–605 (2004); quant-ph/0111102zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of 45th IEEE FOCS, pp. 22–31 (2004); quant-ph/0311001Google Scholar
  14. 14.
    Saks, M., Wigderson, A.: Probabilistic Boolean decision trees and the complexity of evaluating games trees. In: Proc. of the 27th Annual Symp. on FOCS, pp. 29–38 (1986)Google Scholar
  15. 15.
    Laplante, S., Lee, T., Szegedy, M.: The quantum adversary method and formula size lower bounds. In: Proceedings of 20th IEEE Conference on Computational Complexity (2005) (to appear); quant-ph/0501057Google Scholar
  16. 16.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proceedings of 16th SODA, pp. 1109–1117 (2005); quant-ph/0310134Google Scholar
  17. 17.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  18. 18.
    Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: A survey. Theoretical Computer Science 288, 21–43 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)zbMATHGoogle Scholar
  20. 20.
    Mathias, R.: The spectral norm of a nonnegative matrix. Linear Algebra and its Applications 139, 269–284 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Barnum, H., Saks, M.: A lower bound on the quantum query complexity of read-once functions. Journal of Computer and Systems Sciences 69, 244–258 (2004); quant-ph/0201007zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Robert Špalek
    • 1
  • Mario Szegedy
    • 2
  1. 1.CWIAmsterdam
  2. 2.Rutgers University 

Personalised recommendations