Scalable, Efficient and Correct Learning of Markov Boundaries Under the Faithfulness Assumption

  • Jose M. Peña
  • Johan Björkegren
  • Jesper Tegnér
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3571)

Abstract

We propose an algorithm for learning the Markov boundary of a random variable from data without having to learn a complete Bayesian network. The algorithm is correct under the faithfulness assumption, scalable and data efficient. The last two properties are important because we aim to apply the algorithm to identify the minimal set of random variables that is relevant for probabilistic classification in databases with many random variables but few instances. We report experiments with synthetic and real databases with 37, 441 and 139352 random variables showing that the algorithm performs satisfactorily.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cheng, J., Hatzis, C., Hayashi, H., Krogel, M.A., Morishita, S., Page, D., Sese, J.: KDD Cup 2001 Report. In: ACM SIGKDD Explorations, vol. 3, pp. 1–18 (2002), See also http://www.cs.wisc.edu/~dpage/kddcup2001/
  2. 2.
    Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29, 131–163 (1997)MATHCrossRefGoogle Scholar
  3. 3.
    Friedman, N., Nachman, I., Peér, D.: Learning Bayesian Network Structure from Massive Datasets: The Sparse Candidate Algorithm. UAI, pp. 206–215 (1999)Google Scholar
  4. 4.
    Herskovits, E.H.: Computer-Based Probabilistic-Network Construction. PhD Thesis, Stanford University (1991)Google Scholar
  5. 5.
    Margaritis, D., Thrun, S.: Bayesian Network Induction via Local Neighborhoods. NIPS, 505–511 (2000)Google Scholar
  6. 6.
    Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  7. 7.
    Peña, J.M., Björkegren, J., Tegnér, J.: Growing Bayesian Network Models of Gene Networks from Seed Genes (2005) (Submitted)Google Scholar
  8. 8.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, Heidelberg (1993)MATHGoogle Scholar
  9. 9.
    Tsamardinos, I., Aliferis, C.F.: Towards Principled Feature Selection: Relevancy, Filters and Wrappers. AI & Statistics (2003)Google Scholar
  10. 10.
    Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Algorithms for Large Scale Markov Blanket Discovery. In: FLAIRS, pp. 376-380 (2003)Google Scholar
  11. 11.
    Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Time and Sample Efficient Discovery of Markov Blankets and Direct Causal Relations. In: KDD, pp. 673–678 (2003)Google Scholar
  12. 12.
    Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Time and Sample Efficient Discovery of Markov Blankets and Direct Causal Relations. Technical Report DSL TR-03-04, Vanderbilt University (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jose M. Peña
    • 1
  • Johan Björkegren
    • 2
  • Jesper Tegnér
    • 1
    • 2
  1. 1.Computational Biology, Department of Physics and Measurement TechnologyLinköping UniversitySweden
  2. 2.Center for Genomics and BioinformaticsKarolinska InstitutetSweden

Personalised recommendations