Directional Versus Omnidirectional Antennas for Energy Consumption and k-Connectivity of Networks of Sensors

  • Evangelos Kranakis
  • Danny Krizanc
  • Eric Williams
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3544)


A network is k-connected if it remains connected after the removal of any k–1 of its nodes. Assume that n sensors, modeled here as (omni)directional antennas, are dropped randomly and independently with the uniform distribution on the interior of a unit length segment or a unit square. We derive sufficient conditions on the beam width of directional antennas so that the energy consumption required to maintain k-connectivity of the resulting network of sensors is lower when using directional than when using omnidirectional antennas. Our theoretical bounds are shown by experiment to be accurate under most circumstances. For the case of directional antennae, we provide simple algorithms for setting up a k-connected network requiring low energy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agre, J., Clare, L.: An integrated architecture for cooperative sensing networks. IEEE Computer 33(5), 106–108 (2000)Google Scholar
  2. 2.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 2nd edn. Wiley, New York (1997)Google Scholar
  3. 3.
    Braginsky, D., Estrin, D.: Rumor routing algorithm for sensor networks (2001), Available at
  4. 4.
    Doherty, L., Ghaoui, L.E., Pister, K.S.J.: Convex position estimation in wireless sensor networks. In: Proceedings of IEEE Infocom, Anchorage, AK (April 2001)Google Scholar
  5. 5.
    Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next Century Challenges: Scalable Coordination in Sensor Networks. In: Proc. 5th ACM/IEEE International Conference on Mobile Computing, MOBICOM 1999 (1999)Google Scholar
  6. 6.
    Goel, A., Rai, S., Krishnamachari, B.: Sharp Thresholds for Monotone Properties in Random Geometric Graphs. Stanford University (2003) (manuscript)Google Scholar
  7. 7.
    Gupta, P., Kumar, P.R.: Critical Power for Asymptotic Connectivity in Wireless Networks. In: Stochastic Analysis, Control, Optimization, and Applications, Birkhauser, Basel (1998)Google Scholar
  8. 8.
    Kahn, J.M., Katz, R.H., Pister, K.S.J.: Mobile networking for smart dust. In: Proceedings of MobiCom 1999, Seattle, WA (August 1999)Google Scholar
  9. 9.
    Ko, Y.B., Shankarkumar, V., Vaidya, N.H.: Medium access control protocols using directional antennas in ad-hoc networks. In: Proc. IEEE INFOCOM 2000 (March 2000)Google Scholar
  10. 10.
    Kranakis, E., Krizanc, D., Urrutia, J.: Coverage and Connectivity in Networks with Directional Sensors. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 917–924. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage problems in wireless ad-hoc sensor networks. In: Proceedings of IEEE Infocom, Anchorage, AK (2001)Google Scholar
  12. 12.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  13. 13.
    Nasipuri, A., Ye, S., You, J., Hiromoto, R.E.: A MAC protocol for mobile ad hoc networks using directional antennas. In: Proc. IEEE Wireless Communications and Networking Conference, WCNC 2000 (2000)Google Scholar
  14. 14.
    National Research Council, Embedded, Everywhere: A Research Agenda for Systems of Embedded Computers, Committee on Networked Systems of Embedded Computers, for the Computer Science and Telecommunications Board, Division on Engineering and Physical Sciences, Washington, DC (2001)Google Scholar
  15. 15.
    Penrose, M.D.: On k-Connectivity for a Geometric Random Graph. Random Structures and Algorithms 15, 145–164 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Penrose, M.D.: The Longest Edge of the Random Minimal Spanning Tree. The Annals of Applied Probability 7(2), 340–361 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Ramanathan, R.: On the Performance of Ad Hoc Networks with Beamforming Antennas. In: The Proceedings of ACM Symposium on Mobile Ad hoc Networking and Computing, MobiHoc 2001 (2001)Google Scholar
  19. 19.
    Santi, P., Blough, D.: The Critical Transmitting Range for Connectivity in Sparse Wireless Ad Hoc Networks. IEEE Transactions on Mobile Computing (to appear)Google Scholar
  20. 20.
    Shakkottai, S., Srikant, R., Shroff, N.: Unreliable Sensor Grids: Coverage, Connectivity and Diameter. In: Proceedings of IEEE INFOCOM 2003, San Francisco, March 30 to April 2 (2003)Google Scholar
  21. 21.
    Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.: Protocols for self- organization of a wireless sensor network. IEEE Personal Communications 7, 16–27 (2000)CrossRefGoogle Scholar
  22. 22.
    Spyropoulos, A., Raghavendra, C.S.: Energy Efficient Communications in Ad Hoc Networks Using Directional Antennas. In: proceedings of INFOCOM 2002, New York, June 23-27 (2002)Google Scholar
  23. 23.
    Wan, P.-J., Yi, C.-W.: Asymptotic Critical Transmission Radius and Critical Neighbor Number for k-connectivity in Wireless Ad Hoc Networks. Mobihoc (2004) (to appear)Google Scholar
  24. 24.
    Warneke, B., Last, M., Leibowitz, B., Pister, K.: SmartDust: communicating with a cubic-millimeter computer. IEEE Computer 34(1), 44–51 (2001)Google Scholar
  25. 25.
    Ye, W., Heidemann, J., Estrin, D.: An energy-efficient MAC protocol for wireless sensor networks. In: Proceedings of IEEE Infocom, New York, NY (June 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Evangelos Kranakis
    • 1
  • Danny Krizanc
    • 2
  • Eric Williams
    • 2
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA

Personalised recommendations