Computing All the Best Swap Edges Distributively

  • P. Flocchini
  • L. Pagli
  • G. Prencipe
  • N. Santoro
  • P. Widmayer
  • T. Zuva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3544)

Abstract

In systems using shortest-path routing tables, a single link failure is enough to interrupt the message transmission by disconnecting one or more shortest path spanning trees. The on-line recomputation of an alternative path or of the entire new shortest path trees, rebuilding the routing tables accordingly, is rather expensive and causes long delays in the message’s transmission [5, 10]. Hopefully, some of these costs will be reduced if the serial algorithms for dynamic graphs (e.g., those of [1]) could be somehow employed; to date, the difficulties of finding an e.cient distributed implementation have not been overcome (e.g., see [9]).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: CRC Handbook of Algorithms and Theory. CRC Press, Boca Raton (1997)Google Scholar
  2. 2.
    Di Salvo, A., Proietti, G.: Swapping a failing edge of a shortest paths tree by minimizing the average stretch factor. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 99–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Flocchini, P., Mesa, T., Pagli, L., Prencipe, G., Santoro, N.: Efficient protocols for computing optimal swap edges. In: Proc. of 3rd IFIP International Conference on Theoretical Computer Science (TCS 2004) (2004) (to appear)Google Scholar
  4. 4.
    Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. Information and Computation 79, 43–59 (1988)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Polynomial-time computable backup tables for shortest-path routing. In: Proc. of 10th Colloquium on Structural Information and Communication Complexity (SIROCCO 2003), pp. 163–177 (2003)Google Scholar
  6. 6.
    Mohanty, H., Bhattacharjee, G.P.: A distributed algorithm for edge-disjoint path problem. In: Proc. of 6th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 344–361 (1986)Google Scholar
  7. 7.
    Nardelli, E., Proietti, G., Widmayer, P.: Finding all the best swaps of a minimum diameter spanning tree under transient edge failures. Journal of Graph Algorithms and Applications 2(1), 1–23 (1997)Google Scholar
  8. 8.
    Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source shortest paths tree is good and fast. Algoritmica 35, 56–74 (2003)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Narvaez, P., Siu, K.Y., Teng, H.Y.: New dynamic algorithms for shortest path tree computation. IEEE Transactions on Networking 8, 735–746 (2000)CrossRefGoogle Scholar
  10. 10.
    Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach, 3rd edn. Morgan Kaufmann, San Francisco (2003)Google Scholar
  11. 11.
    Proietti, G.: Dynamic maintenance versus swapping: An experimental study on shortest paths trees. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 207–217. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Tarjan, R.E.: Application of path compression on balanced trees. Journal of ACM 26, 690–715 (1979)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • P. Flocchini
    • 1
  • L. Pagli
    • 2
  • G. Prencipe
    • 2
  • N. Santoro
    • 3
  • P. Widmayer
    • 4
  • T. Zuva
    • 5
  1. 1.University of OttawaCanada
  2. 2.Università di PisaItaly
  3. 3.Carleton UniversityCanada
  4. 4.ETHZurichSwitzerland
  5. 5.University of BotswanaGaborone

Personalised recommendations